Valorising lignocellulosic biomass to high-performance electrocatalysts via anaerobic digestion pretreatment

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Biochar Pub Date : 2024-03-12 DOI:10.1007/s42773-024-00311-8
Juntao Yang, Songbiao Tang, Wenjie Mei, Yiquan Chen, Weiming Yi, Pengmei Lv, Gaixiu Yang
{"title":"Valorising lignocellulosic biomass to high-performance electrocatalysts via anaerobic digestion pretreatment","authors":"Juntao Yang, Songbiao Tang, Wenjie Mei, Yiquan Chen, Weiming Yi, Pengmei Lv, Gaixiu Yang","doi":"10.1007/s42773-024-00311-8","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic digestion (AD) was initially evaluated as a potential preprocessing method for preparing biomass-based carbon electrocatalysts in this study. The AD pretreatment succeeded in the structural depolymerization and nitrogen enrichment of <i>Hybrid Pennisetum</i>, which provided favorable conditions to achieve efficient and homogeneous nitrogen introduction due to microorganism community enrichment and provided a porous structure by degradation of the biodegradable components. The resulted biochar exhibited improved physiochemical properties including higher specific surface areas, nitrogen content and graphitization degree than that obtained from pyrolyzing raw biomass. These improvements were positively correlated with the AD time and showed to have enhanced the performance in oxygen reduction reaction and practical microbial fuel cell applications. Amongst the investigated samples, the obtained biochar pretreated by AD for 15 days exhibited the most excellent performance with an onset potential of 0.17 V (VS. saturated calomel electrode) and the maximal power density of 543.2 mW cm<sup>−2</sup> assembled in microbial fuel cells. This study suggested applying AD as a new biological pretreatment in the preparation of biomass-based electrocatalysts, and provided a unique pathway for fabricating high-performance biochar-based catalysts by structure optimization and N-containing active sites construction via gentle biological method, thereby providing a cost-effective method to fabricate metal-free catalysts for oxygen reduction reaction.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"301 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00311-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic digestion (AD) was initially evaluated as a potential preprocessing method for preparing biomass-based carbon electrocatalysts in this study. The AD pretreatment succeeded in the structural depolymerization and nitrogen enrichment of Hybrid Pennisetum, which provided favorable conditions to achieve efficient and homogeneous nitrogen introduction due to microorganism community enrichment and provided a porous structure by degradation of the biodegradable components. The resulted biochar exhibited improved physiochemical properties including higher specific surface areas, nitrogen content and graphitization degree than that obtained from pyrolyzing raw biomass. These improvements were positively correlated with the AD time and showed to have enhanced the performance in oxygen reduction reaction and practical microbial fuel cell applications. Amongst the investigated samples, the obtained biochar pretreated by AD for 15 days exhibited the most excellent performance with an onset potential of 0.17 V (VS. saturated calomel electrode) and the maximal power density of 543.2 mW cm−2 assembled in microbial fuel cells. This study suggested applying AD as a new biological pretreatment in the preparation of biomass-based electrocatalysts, and provided a unique pathway for fabricating high-performance biochar-based catalysts by structure optimization and N-containing active sites construction via gentle biological method, thereby providing a cost-effective method to fabricate metal-free catalysts for oxygen reduction reaction.

Graphical Abstract

Abstract Image

通过厌氧消化预处理将木质纤维素生物质转化为高性能电催化剂
本研究将厌氧消化(AD)作为制备生物质基碳电催化剂的一种潜在预处理方法进行了初步评估。厌氧消化预处理成功地实现了杂交凤尾兰的结构解聚和氮富集,为微生物群落富集带来的高效均匀氮导入提供了有利条件,并通过生物可降解成分的降解提供了多孔结构。与热解生物质原料相比,所得到的生物炭具有更好的理化特性,包括更高的比表面积、氮含量和石墨化程度。这些改进与 AD 时间呈正相关,并显示出生物炭在氧还原反应和微生物燃料电池实际应用中的性能得到了提高。在所研究的样品中,经 15 天厌氧发酵预处理的生物炭表现出最优异的性能,其在微生物燃料电池中的起始电位为 0.17 V(与饱和甘汞电极相比),最大功率密度为 543.2 mW cm-2。该研究提出了将AD作为一种新的生物预处理方法应用于制备生物质电催化剂,并通过温和的生物方法优化结构和构建含N活性位点,为制备高性能的生物炭催化剂提供了一条独特的途径,从而为制备氧气还原反应的无金属催化剂提供了一种经济有效的方法。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信