Novel pyrano[2,3-c]pyrazolopyrimidines as promising anticancer agents: Design, synthesis, and cell cycle arrest of HepG2 cells at S phase

IF 1.8 3区 化学 Q3 CHEMISTRY, ORGANIC
David S. A. Haneen , Mohamed H. Hekal , Wael S. I. Abou-Elmagd , Wael M. El-Sayed
{"title":"Novel pyrano[2,3-c]pyrazolopyrimidines as promising anticancer agents: Design, synthesis, and cell cycle arrest of HepG2 cells at S phase","authors":"David S. A. Haneen ,&nbsp;Mohamed H. Hekal ,&nbsp;Wael S. I. Abou-Elmagd ,&nbsp;Wael M. El-Sayed","doi":"10.1080/00397911.2024.2327047","DOIUrl":null,"url":null,"abstract":"<div><p>The poor selectivity, significant toxicity, high cost, and emergence of resistance of conventional chemotherapies are driving motive for the ongoing search for novel anticancer agents. New pyrano[2,3-<em>c</em>]pyrazolopyrimidines were synthesized and examined as antiproliferative agents, and the possible molecular mechanism(s) of action were explored. The mass and elemental analyses, alongside the IR,<sup>1</sup>H, and <sup>13</sup>C NMR spectra, confirmed the proposed structures of the obtained compounds. Derivatives <strong>4</strong> and <strong>7</strong> demonstrated the best antiproliferative profile against HepG2 cancer cells at 4 µM, with a high selectivity index of ∼7–9 folds. They increased the S phase cell population by 51% and 40% and caused a 5- and 11-fold increase in the p21 protein. Compound <strong>7</strong> was superior in inhibiting HepG2 cell migration and delayed wound healing, reducing migration rates by 55% and 90%, respectively. Future studies on the pharmacokinetics, pharmacodynamics, antimetastatic, and antitumor activities in animal models would be a robust advance.</p></div>","PeriodicalId":22119,"journal":{"name":"Synthetic Communications","volume":"54 8","pages":"Pages 655-671"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0039791124000195","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The poor selectivity, significant toxicity, high cost, and emergence of resistance of conventional chemotherapies are driving motive for the ongoing search for novel anticancer agents. New pyrano[2,3-c]pyrazolopyrimidines were synthesized and examined as antiproliferative agents, and the possible molecular mechanism(s) of action were explored. The mass and elemental analyses, alongside the IR,1H, and 13C NMR spectra, confirmed the proposed structures of the obtained compounds. Derivatives 4 and 7 demonstrated the best antiproliferative profile against HepG2 cancer cells at 4 µM, with a high selectivity index of ∼7–9 folds. They increased the S phase cell population by 51% and 40% and caused a 5- and 11-fold increase in the p21 protein. Compound 7 was superior in inhibiting HepG2 cell migration and delayed wound healing, reducing migration rates by 55% and 90%, respectively. Future studies on the pharmacokinetics, pharmacodynamics, antimetastatic, and antitumor activities in animal models would be a robust advance.

新型吡喃并[2,3-c]吡唑嘧啶作为有前途的抗癌剂:设计、合成和抑制 S 期 HepG2 细胞的细胞周期
传统化疗药物选择性差、毒性大、成本高、抗药性强,这些都是目前寻找新型抗癌药物的动力。新型吡喃并[2...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synthetic Communications
Synthetic Communications 化学-有机化学
CiteScore
4.40
自引率
4.80%
发文量
156
审稿时长
4.3 months
期刊介绍: Synthetic Communications presents communications describing new methods, reagents, and other synthetic work pertaining to organic chemistry with sufficient experimental detail to permit reported reactions to be repeated by a chemist reasonably skilled in the art. In addition, the Journal features short, focused review articles discussing topics within its remit of synthetic organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信