Short-depth QAOA circuits and quantum annealing on higher-order ising models

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Elijah Pelofske, Andreas Bärtschi, Stephan Eidenbenz
{"title":"Short-depth QAOA circuits and quantum annealing on higher-order ising models","authors":"Elijah Pelofske, Andreas Bärtschi, Stephan Eidenbenz","doi":"10.1038/s41534-024-00825-w","DOIUrl":null,"url":null,"abstract":"<p>We present a direct comparison between QAOA (Quantum Alternating Operator Ansatz), and QA (Quantum Annealing) on 127 qubit problem instances. QAOA with <i>p</i> = 1, 2 rounds is executed on the 127 qubit heavy-hex graph gate-model quantum computer ibm_washington, using on-device grid-searches for angle finding, and QA is executed on two Pegasus-chip D-Wave quantum annealers. The problems are random Ising models whose connectivity matches heavy-hex graphs and the Pegasus graph connectivity, and optionally include hardware-compatible cubic terms (<i>Z</i><i>Z</i><i>Z</i> terms). The QAOA circuits are heavily optimized and of extremely short depth, with a CNOT depth of 6 per round, which allows whole chip usage of the heavy-hex lattice. QAOA and QA are both compared against simulated annealing and the optimal solutions are computed exactly using CPLEX. The noiseless mean QAOA expectation values for <i>p</i> = 1, 2 are computed using classical light-cone based simulations. We find QA outperforms QAOA on the evaluated devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"29 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00825-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a direct comparison between QAOA (Quantum Alternating Operator Ansatz), and QA (Quantum Annealing) on 127 qubit problem instances. QAOA with p = 1, 2 rounds is executed on the 127 qubit heavy-hex graph gate-model quantum computer ibm_washington, using on-device grid-searches for angle finding, and QA is executed on two Pegasus-chip D-Wave quantum annealers. The problems are random Ising models whose connectivity matches heavy-hex graphs and the Pegasus graph connectivity, and optionally include hardware-compatible cubic terms (ZZZ terms). The QAOA circuits are heavily optimized and of extremely short depth, with a CNOT depth of 6 per round, which allows whole chip usage of the heavy-hex lattice. QAOA and QA are both compared against simulated annealing and the optimal solutions are computed exactly using CPLEX. The noiseless mean QAOA expectation values for p = 1, 2 are computed using classical light-cone based simulations. We find QA outperforms QAOA on the evaluated devices.

Abstract Image

高阶等效模型上的短深度 QAOA 电路和量子退火
我们介绍了 QAOA(量子交替算子解析)和 QA(量子退火)在 127 量子位问题实例上的直接比较。在 127 量子比特重六面体图门模型量子计算机 ibm_washington 上执行了 p = 1、2 轮的 QAOA,使用设备上的网格搜索进行角度查找;在两个飞马芯片 D-Wave 量子退火器上执行了 QA。问题是随机伊辛模型,其连通性与重六面体图和飞马图的连通性相匹配,并可选择包含硬件兼容的立方项(ZZZ 项)。QAOA 电路经过大量优化,深度极短,每轮的 CNOT 深度为 6,因此可以在整个芯片上使用重六面体晶格。QAOA 和 QA 都与模拟退火进行了比较,并使用 CPLEX 精确计算了最优解。在 p = 1、2 的情况下,使用基于光锥的经典模拟计算了无噪声平均 QAOA 期望值。我们发现,在所评估的设备上,QA 优于 QAOA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信