{"title":"Novel analytic methods for predicting extinctions in ecological networks","authors":"Chris Jones, Damaris Zurell, Karoline Wiesner","doi":"10.1002/ecm.1601","DOIUrl":null,"url":null,"abstract":"<p>Ecological networks describe the interactions between different species, informing us how they rely on one another for food, pollination, and survival. If a species in an ecosystem is under threat of extinction, it can affect other species in the system and possibly result in their secondary extinction as well. Understanding how (primary) extinctions cause secondary extinctions on ecological networks has been considered previously using computational methods. However, these methods do not provide an explanation for the properties that make ecological networks robust, and they can be computationally expensive. We develop a new analytic model for predicting secondary extinctions that requires no stochastic simulation. Our model can predict secondary extinctions when primary extinctions occur at random or due to some targeting based on the number of links per species or risk of extinction, and can be applied to an ecological network of any number of layers. Using our model, we consider how false negatives and positives in network data affect predictions for network robustness. We have also extended the model to predict scenarios in which secondary extinctions occur once species lose a certain percentage of interaction strength, and to model the loss of interactions as opposed to just species extinction. From our model, it is possible to derive new analytic results such as how ecological networks are most robust when secondary species are of equal degree. Additionally, we show that both specialization and generalization in the distribution of interaction strength can be advantageous for network robustness, depending upon the extinction scenario being considered.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1601","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1601","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecological networks describe the interactions between different species, informing us how they rely on one another for food, pollination, and survival. If a species in an ecosystem is under threat of extinction, it can affect other species in the system and possibly result in their secondary extinction as well. Understanding how (primary) extinctions cause secondary extinctions on ecological networks has been considered previously using computational methods. However, these methods do not provide an explanation for the properties that make ecological networks robust, and they can be computationally expensive. We develop a new analytic model for predicting secondary extinctions that requires no stochastic simulation. Our model can predict secondary extinctions when primary extinctions occur at random or due to some targeting based on the number of links per species or risk of extinction, and can be applied to an ecological network of any number of layers. Using our model, we consider how false negatives and positives in network data affect predictions for network robustness. We have also extended the model to predict scenarios in which secondary extinctions occur once species lose a certain percentage of interaction strength, and to model the loss of interactions as opposed to just species extinction. From our model, it is possible to derive new analytic results such as how ecological networks are most robust when secondary species are of equal degree. Additionally, we show that both specialization and generalization in the distribution of interaction strength can be advantageous for network robustness, depending upon the extinction scenario being considered.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.