{"title":"Intergranular corrosion of Ni-30Cr in high-temperature hydrogenated water after removing surface passivating film","authors":"K. Kruska, M. J. Olszta, J. Wang, D. K. Schreiber","doi":"10.1038/s41529-024-00442-0","DOIUrl":null,"url":null,"abstract":"High-resolution transmission electron microscopy and atom probe tomography are used to characterize the initial passivation and subsequent intergranular corrosion of degraded grain boundaries in a model Ni-30Cr alloy exposed to 360 °C hydrogenated water. Upon initial exposure for 1000 h, the alloy surface directly above the grain boundary forms a thin passivating film of Cr2O3, protecting the underlying grain boundary from intergranular corrosion. However, the metal grain boundary experiences severe Cr depletion and grain boundary migration during this initial exposure. To understand how Cr depletion affects further corrosion, the local protective film was sputtered away using a glancing angle focused ion beam. Upon further exposure, the surface fails to repassivate, and intergranular corrosion is observed through the Cr-depleted region. Through this combination of high-resolution microscopy and localized passive film removal, we show that, although high-Cr alloys are resistant to intergranular attack and stress corrosion cracking, degradation-induced changes in the underlying metal at grain boundaries make the material more susceptible once the initial passive film is breached.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00442-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00442-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution transmission electron microscopy and atom probe tomography are used to characterize the initial passivation and subsequent intergranular corrosion of degraded grain boundaries in a model Ni-30Cr alloy exposed to 360 °C hydrogenated water. Upon initial exposure for 1000 h, the alloy surface directly above the grain boundary forms a thin passivating film of Cr2O3, protecting the underlying grain boundary from intergranular corrosion. However, the metal grain boundary experiences severe Cr depletion and grain boundary migration during this initial exposure. To understand how Cr depletion affects further corrosion, the local protective film was sputtered away using a glancing angle focused ion beam. Upon further exposure, the surface fails to repassivate, and intergranular corrosion is observed through the Cr-depleted region. Through this combination of high-resolution microscopy and localized passive film removal, we show that, although high-Cr alloys are resistant to intergranular attack and stress corrosion cracking, degradation-induced changes in the underlying metal at grain boundaries make the material more susceptible once the initial passive film is breached.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies