GC-MS analysis, pharmacokinetic properties, molecular docking and dynamics simulation of bioactives from Curcumis maderaspatanus to target oral cancer.
{"title":"GC-MS analysis, pharmacokinetic properties, molecular docking and dynamics simulation of bioactives from <i>Curcumis maderaspatanus</i> to target oral cancer.","authors":"Ronisha Shankar Rao, Deepak Saravanan, Monisha Mohan","doi":"10.1007/s40203-023-00177-x","DOIUrl":null,"url":null,"abstract":"<p><p>Oral cancer (OC) which is the most predominant malignant epithelial neoplasm in the oral cavity, is the 8th commonest type of cancer globally. Natural products are excellent sources of functionally active compounds and essential nutrients that play an important role in cancer therapeutics. Using the structure-based virtual screening, drug-likeness, toxicity, and molecular dynamics simulation, the current study focused on the evaluation of anticancer activity of bioactive compounds from <i>Curcumis maderaspatanus</i>. AURKA, CDK1, and VEGFR-2 proteins which play a crucial role in the development and progression of oral cancer was selected as targets and 216 phytochemicals along with a known reference inhibitor were docked against these target proteins. Based on the docking score, it was found that phytochemicals namely 3-Benzoyl-2,4(1H,3H)-Pyrimidinedione (- 8.0 kcal/mol), 1-Cyclohexylethanol, trifluoroacetate (- 6.3 kcal/mol), and Alpha-Curcumene (- 8.9 kcal/mol) interacts with AURKA, CDK1, and VEGFR-2 with highest binding affinity. The molecular dynamics simulation demonstrated that the best docked complexes exhibited excellent structural stability in terms of RMSD, RSMF, SASA and Rg for a period of 100 ns. Altogether, our computational analysis reveals that the bioactives from <i>C. maderaspatanus</i> could emerge as efficacious drug candidates in oral cancer therapy.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-023-00177-x.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 1","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-023-00177-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cancer (OC) which is the most predominant malignant epithelial neoplasm in the oral cavity, is the 8th commonest type of cancer globally. Natural products are excellent sources of functionally active compounds and essential nutrients that play an important role in cancer therapeutics. Using the structure-based virtual screening, drug-likeness, toxicity, and molecular dynamics simulation, the current study focused on the evaluation of anticancer activity of bioactive compounds from Curcumis maderaspatanus. AURKA, CDK1, and VEGFR-2 proteins which play a crucial role in the development and progression of oral cancer was selected as targets and 216 phytochemicals along with a known reference inhibitor were docked against these target proteins. Based on the docking score, it was found that phytochemicals namely 3-Benzoyl-2,4(1H,3H)-Pyrimidinedione (- 8.0 kcal/mol), 1-Cyclohexylethanol, trifluoroacetate (- 6.3 kcal/mol), and Alpha-Curcumene (- 8.9 kcal/mol) interacts with AURKA, CDK1, and VEGFR-2 with highest binding affinity. The molecular dynamics simulation demonstrated that the best docked complexes exhibited excellent structural stability in terms of RMSD, RSMF, SASA and Rg for a period of 100 ns. Altogether, our computational analysis reveals that the bioactives from C. maderaspatanus could emerge as efficacious drug candidates in oral cancer therapy.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-023-00177-x.