{"title":"Are there sex differences in oxytocin and vasopressin V1a receptors ligand binding affinities?","authors":"Jack H Taylor, H Elliott Albers","doi":"10.1007/s43440-024-00577-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is substantial evidence for sex differences in the functioning of one of the most common receptor systems; G protein-coupled receptors (GPCRs). There are many points along the GPCR-mediated molecular signaling pathway at which males and females may differ, one of the first of which, chronologically, is in the stability of the interaction between the ligand and the receptor, or its binding affinity. Here we investigate the binding affinities of oxytocin (OT) and vasopressin (AVP) at the oxytocin receptor (OTR) and the vasopressin V1a receptor (V1aR), both of which are present in numerous in brain regions associated with social behavior.</p><p><strong>Method: </strong>In order to investigate sex- and estrous cycle-dependent differences in ligand-receptor binding affinity, male (n = 6) Syrian hamsters (Mesocricetus auratus), females on the day of estrus (E females, n = 6), and females on the second day of diestrus (D2 females n = 6) were chosen for study. Brains from hamsters were mounted on slides and competition and saturation binding assays were conducted.</p><p><strong>Results: </strong>We report a remarkable similarity in the binding affinities of OT and AVP in males and females. Small differences were detected, however, in receptor and ligand specificity in females depending on whether they were in the estrous or diestrous stage of their ovulatory cycle.</p><p><strong>Conclusion: </strong>These data suggest that sex differences in binding affinity are not a likely source of the many sex differences that have been observed in the effects of OT and AVP in hamsters and other species.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":"416-423"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-024-00577-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There is substantial evidence for sex differences in the functioning of one of the most common receptor systems; G protein-coupled receptors (GPCRs). There are many points along the GPCR-mediated molecular signaling pathway at which males and females may differ, one of the first of which, chronologically, is in the stability of the interaction between the ligand and the receptor, or its binding affinity. Here we investigate the binding affinities of oxytocin (OT) and vasopressin (AVP) at the oxytocin receptor (OTR) and the vasopressin V1a receptor (V1aR), both of which are present in numerous in brain regions associated with social behavior.
Method: In order to investigate sex- and estrous cycle-dependent differences in ligand-receptor binding affinity, male (n = 6) Syrian hamsters (Mesocricetus auratus), females on the day of estrus (E females, n = 6), and females on the second day of diestrus (D2 females n = 6) were chosen for study. Brains from hamsters were mounted on slides and competition and saturation binding assays were conducted.
Results: We report a remarkable similarity in the binding affinities of OT and AVP in males and females. Small differences were detected, however, in receptor and ligand specificity in females depending on whether they were in the estrous or diestrous stage of their ovulatory cycle.
Conclusion: These data suggest that sex differences in binding affinity are not a likely source of the many sex differences that have been observed in the effects of OT and AVP in hamsters and other species.
期刊介绍:
Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures.
Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology.
Studies of plant extracts are not suitable for Pharmacological Reports.