Tobias Graf, Elisabeth Völler, Kurt Erdelt, Michael Stimmelmayr, Oliver Schubert, Jan-Frederik Güth
{"title":"Monolithic hybrid abutment crowns: Influence of crown height, crown morphology and material on the implant-abutment complex.","authors":"Tobias Graf, Elisabeth Völler, Kurt Erdelt, Michael Stimmelmayr, Oliver Schubert, Jan-Frederik Güth","doi":"10.2186/jpr.JPR_D_23_00253","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This in vitro study investigated the influence of material selection, crown morphology, and vertical crown height on the biomechanical behavior of screw-retained monolithic hybrid abutment crowns (HACs).</p><p><strong>Methods: </strong>Ninety implants were embedded in accordance with ISO standard 14801; ninety HACs were mounted (N=90). Monolithic crowns with varying group-specific designs were luted using titanium bases. HACs were fabricated from monolithic lithium disilicate ceramic (LD) or zirconia-reinforced lithium silicate ceramic (ZLS). The crown morphology was either maxillary premolar (LD_PM, ZLS_PM) or molar (LD_MO). The three groups were further divided into three subgroups of ten specimens, each designed with a small (7.5 mm), middle (10.5 mm), and high (13.5 mm) configuration of crown heights (N=10). A load-to-failure test at 30° off-axis was conducted using a universal testing machine until failure. For statistical analysis, Kolmogorov-Smirnov and Mann-Whitney U tests were conducted (P < 0.05).</p><p><strong>Results: </strong>All LD_MO groups presented the highest failure values (808.7 to 947.9 N), followed by the LD_PM (525.8 to 722.8 N) and ZLS_PM groups (312.6 to 478.8N). A comparison between LD and ZLS materials (P < 0.001) as well as the crown morphology (P < 0.001) showed significant differences in failure values. The values in the subgroups of ZLS_PM (low, middle, high) decreased as the crown height increased. The fracture modes showed no consistent patterns across the test groups.</p><p><strong>Conclusions: </strong>Material selection, crown morphology, and vertical crown height appear to be important factors that may influence the clinical failure values and patterns of screw-retained single implant crowns.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_23_00253","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This in vitro study investigated the influence of material selection, crown morphology, and vertical crown height on the biomechanical behavior of screw-retained monolithic hybrid abutment crowns (HACs).
Methods: Ninety implants were embedded in accordance with ISO standard 14801; ninety HACs were mounted (N=90). Monolithic crowns with varying group-specific designs were luted using titanium bases. HACs were fabricated from monolithic lithium disilicate ceramic (LD) or zirconia-reinforced lithium silicate ceramic (ZLS). The crown morphology was either maxillary premolar (LD_PM, ZLS_PM) or molar (LD_MO). The three groups were further divided into three subgroups of ten specimens, each designed with a small (7.5 mm), middle (10.5 mm), and high (13.5 mm) configuration of crown heights (N=10). A load-to-failure test at 30° off-axis was conducted using a universal testing machine until failure. For statistical analysis, Kolmogorov-Smirnov and Mann-Whitney U tests were conducted (P < 0.05).
Results: All LD_MO groups presented the highest failure values (808.7 to 947.9 N), followed by the LD_PM (525.8 to 722.8 N) and ZLS_PM groups (312.6 to 478.8N). A comparison between LD and ZLS materials (P < 0.001) as well as the crown morphology (P < 0.001) showed significant differences in failure values. The values in the subgroups of ZLS_PM (low, middle, high) decreased as the crown height increased. The fracture modes showed no consistent patterns across the test groups.
Conclusions: Material selection, crown morphology, and vertical crown height appear to be important factors that may influence the clinical failure values and patterns of screw-retained single implant crowns.