Asymptotic analysis of three-parameter Mittag-Leffler function with large parameters, and application to sub-diffusion equation involving Bessel operator

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hassan Askari, Alireza Ansari
{"title":"Asymptotic analysis of three-parameter Mittag-Leffler function with large parameters, and application to sub-diffusion equation involving Bessel operator","authors":"Hassan Askari, Alireza Ansari","doi":"10.1007/s13540-024-00263-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we apply the steepest descent method to the Schläfli-type integral representation of the three-parameter Mittag-Leffler function (well-known as the Prabhakar function). We find the asymptotic expansions of this function for its large parameters with respect to the real and complex saddle points. For each parameter, we separately establish a relation between the variable and parameter of function to determine the leading asymptotic term. We also introduce differentiations of the three-parameter Mittag-Leffler functions with respect to parameters and modify the associated asymptotic expansions for their large parameters. As an application, we derive the leading asymptotic term of fundamental solution of the time-fractional sub-diffusion equation including the Bessel operator with large order.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00263-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the steepest descent method to the Schläfli-type integral representation of the three-parameter Mittag-Leffler function (well-known as the Prabhakar function). We find the asymptotic expansions of this function for its large parameters with respect to the real and complex saddle points. For each parameter, we separately establish a relation between the variable and parameter of function to determine the leading asymptotic term. We also introduce differentiations of the three-parameter Mittag-Leffler functions with respect to parameters and modify the associated asymptotic expansions for their large parameters. As an application, we derive the leading asymptotic term of fundamental solution of the time-fractional sub-diffusion equation including the Bessel operator with large order.

Abstract Image

具有大参数的三参数 Mittag-Leffler 函数的渐近分析,以及在涉及贝塞尔算子的子扩散方程中的应用
在本文中,我们将最陡下降法应用于三参数米塔格-勒弗勒函数(即众所周知的普拉巴卡尔函数)的施拉尔夫利型积分表示。我们为该函数的大参数找到了关于实鞍点和复鞍点的渐近展开。对于每个参数,我们都分别建立了变量与函数参数之间的关系,以确定前导渐近项。我们还引入了三参数 Mittag-Leffler 函数关于参数的微分,并修改了其大参数的相关渐近展开式。作为应用,我们推导了包括大阶贝塞尔算子在内的时分亚扩散方程基本解的前导渐近项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信