Disposable Screen-Printed Microchip Based on Nanoparticles Sensitive Membrane for Potentiometric Determination of Lead

IF 1.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Majed Alrobaian, Munerah Alfadhel, Sayed Zayed, Mohammad AlDosari, Hassan Arida
{"title":"Disposable Screen-Printed Microchip Based on Nanoparticles Sensitive Membrane for Potentiometric Determination of Lead","authors":"Majed Alrobaian, Munerah Alfadhel, Sayed Zayed, Mohammad AlDosari, Hassan Arida","doi":"10.1155/2024/7610614","DOIUrl":null,"url":null,"abstract":"Realization of screen-printed disposable microchip based on organic membrane sensitive layer highly responsive to lead has been demonstrated for the first time. Fabrication, potentiometric characterization and analytical application of the novel microchip have been reported. A sensitive layer comprises TiO<sub>2</sub> nanoparticles and multiwalled carbon nanotubes “MWCNTs” composite incorporated in PVC membrane has uploaded on the plastic screen-printed microelectrode substrate surface using novel protocol. The new chip provided a linear behavior for Pb<sup>2+</sup> ions over the lead concentration range of 1 × 10<sup>−6</sup>–1 × 10<sup>−1</sup> mole L<sup>−1</sup> with super Nernstian sensitivity (49 mV), relatively long life span (&gt;4 months), and a fast response time (10 s). The advantages showed by the microchip include simple fabrication, small size, mass production, cost effectiveness, and automation and integration feasibility. The realized new microchip has been successfully utilized in the quantification of some lead (II) samples with average recovery of 101.9% and the RDS was &lt;3.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7610614","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Realization of screen-printed disposable microchip based on organic membrane sensitive layer highly responsive to lead has been demonstrated for the first time. Fabrication, potentiometric characterization and analytical application of the novel microchip have been reported. A sensitive layer comprises TiO2 nanoparticles and multiwalled carbon nanotubes “MWCNTs” composite incorporated in PVC membrane has uploaded on the plastic screen-printed microelectrode substrate surface using novel protocol. The new chip provided a linear behavior for Pb2+ ions over the lead concentration range of 1 × 10−6–1 × 10−1 mole L−1 with super Nernstian sensitivity (49 mV), relatively long life span (>4 months), and a fast response time (10 s). The advantages showed by the microchip include simple fabrication, small size, mass production, cost effectiveness, and automation and integration feasibility. The realized new microchip has been successfully utilized in the quantification of some lead (II) samples with average recovery of 101.9% and the RDS was <3.
基于纳米颗粒敏感膜的一次性丝网印刷微芯片用于铅的电位测定
首次实现了基于有机膜敏感层的丝网印刷一次性微芯片对铅的高灵敏度反应。该新型微芯片的制作、电位表征和分析应用已被报道。采用新颖的方案,在塑料丝网印刷微电极基底表面上传了由聚氯乙烯膜中的二氧化钛纳米粒子和多壁碳纳米管(MWCNTs)复合材料组成的敏感层。新芯片在 1 × 10-6-1 × 10-1 摩尔 L-1 的铅浓度范围内对 Pb2+ 离子呈线性关系,具有超强的 Nernstian 灵敏度(49 mV)、相对较长的使用寿命(4 个月)和快速响应时间(10 秒)。该芯片具有制作简单、体积小、可批量生产、成本效益高、可实现自动化和集成等优点。新型芯片已成功用于一些铅(II)样品的定量分析,平均回收率为 101.9%,RDS 为 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sensors
Journal of Sensors ENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍: Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged. Envisaged applications include, but are not limited to: -Medical, healthcare, and lifestyle monitoring -Environmental and atmospheric monitoring -Sensing for engineering, manufacturing and processing industries -Transportation, navigation, and geolocation -Vision, perception, and sensing for robots and UAVs The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management. As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信