Weighted likelihood methods for robust fitting of wrapped models for p-torus data

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Claudio Agostinelli, Luca Greco, Giovanni Saraceno
{"title":"Weighted likelihood methods for robust fitting of wrapped models for p-torus data","authors":"Claudio Agostinelli, Luca Greco, Giovanni Saraceno","doi":"10.1007/s10182-024-00494-2","DOIUrl":null,"url":null,"abstract":"<p>We consider, robust estimation of wrapped models to multivariate circular data that are points on the surface of a <i>p</i>-torus based on the weighted likelihood methodology. Robust model fitting is achieved by a set of weighted likelihood estimating equations, based on the computation of data dependent weights aimed to down-weight anomalous values, such as unexpected directions that do not share the main pattern of the bulk of the data. Weighted likelihood estimating equations with weights evaluated on the torus or obtained after unwrapping the data onto the Euclidean space are proposed and compared. Asymptotic properties and robustness features of the estimators under study have been studied, whereas their finite sample behavior has been investigated by Monte Carlo numerical experiment and real data examples.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00494-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider, robust estimation of wrapped models to multivariate circular data that are points on the surface of a p-torus based on the weighted likelihood methodology. Robust model fitting is achieved by a set of weighted likelihood estimating equations, based on the computation of data dependent weights aimed to down-weight anomalous values, such as unexpected directions that do not share the main pattern of the bulk of the data. Weighted likelihood estimating equations with weights evaluated on the torus or obtained after unwrapping the data onto the Euclidean space are proposed and compared. Asymptotic properties and robustness features of the estimators under study have been studied, whereas their finite sample behavior has been investigated by Monte Carlo numerical experiment and real data examples.

Abstract Image

用加权似然法稳健拟合 p-torus 数据的包裹模型
我们根据加权似然法,考虑对多元圆形数据(p-torus 表面上的点)的包裹模型进行稳健估计。稳健模型拟合是通过一组加权似然估计方程实现的,该方程基于与数据相关的权重计算,旨在降低异常值的权重,例如与大部分数据的主要模式不一致的意外方向。我们提出并比较了加权似然估计方程,其权重在环上进行评估,或在欧几里得空间上对数据进行解包后获得。对所研究的估计器的渐近特性和稳健性特征进行了研究,并通过蒙特卡罗数值实验和实际数据实例对其有限样本行为进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信