The First ChatGPT4PCG Competition

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Febri Abdullah;Pittawat Taveekitworachai;Mury F. Dewantoro;Ruck Thawonmas;Julian Togelius;Jochen Renz
{"title":"The First ChatGPT4PCG Competition","authors":"Febri Abdullah;Pittawat Taveekitworachai;Mury F. Dewantoro;Ruck Thawonmas;Julian Togelius;Jochen Renz","doi":"10.1109/TG.2024.3376429","DOIUrl":null,"url":null,"abstract":"This article summarizes the first ChatGPT4PCG competition held at the 2023 IEEE Conference on Games. The goal of the competition is to explore emergent abilities of publicly available large language models (LLMs) in performing complex tasks related to procedural content generation, specifically physics-based level generation for \n<italic>Angry Birds</i>\n-like games. Participants are tasked with submitting their prompts for ChatGPT to generate \n<italic>Angry Birds</i>\n-like game structures that resemble English uppercase characters. A structure is a collection of stacked game objects comprising a part of an entire \n<italic>Angry Birds</i>\n-like level. A prompt is an input for LLMs, including ChatGPT. Two evaluation metrics, i.e., stability and similarity, are used to evaluate the submitted prompts. Stability measures the sturdiness of a structure to withstand in-game gravity, while similarity measures a structure's resemblance to the target character. With such evaluation, participants are challenged to produce not only character-like but also stable structures by utilizing prompt engineering techniques. Finally, the competition's results are discussed to provide valuable insights for future studies and competitions.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 4","pages":"971-980"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10470422/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article summarizes the first ChatGPT4PCG competition held at the 2023 IEEE Conference on Games. The goal of the competition is to explore emergent abilities of publicly available large language models (LLMs) in performing complex tasks related to procedural content generation, specifically physics-based level generation for Angry Birds -like games. Participants are tasked with submitting their prompts for ChatGPT to generate Angry Birds -like game structures that resemble English uppercase characters. A structure is a collection of stacked game objects comprising a part of an entire Angry Birds -like level. A prompt is an input for LLMs, including ChatGPT. Two evaluation metrics, i.e., stability and similarity, are used to evaluate the submitted prompts. Stability measures the sturdiness of a structure to withstand in-game gravity, while similarity measures a structure's resemblance to the target character. With such evaluation, participants are challenged to produce not only character-like but also stable structures by utilizing prompt engineering techniques. Finally, the competition's results are discussed to provide valuable insights for future studies and competitions.
第一届 ChatGPT4PCG 竞赛
本文总结了在2023 IEEE游戏大会上举办的第一届ChatGPT4PCG竞赛。竞赛的目标是探索公开可用的大型语言模型(llm)在执行与程序内容生成相关的复杂任务时的突发能力,特别是《愤怒的小鸟》类游戏的基于物理的关卡生成。参与者的任务是向ChatGPT提交他们的提示,以生成类似于英文大写字符的愤怒的小鸟游戏结构。结构是堆叠游戏对象的集合,构成整个《愤怒的小鸟》关卡的一部分。提示符是llm的输入,包括ChatGPT。两个评估指标,即稳定性和相似性,用于评估提交的提示。稳定性衡量的是建筑在游戏中承受重力的强度,而相似性衡量的是建筑与目标角色的相似度。有了这样的评估,参与者面临的挑战是,不仅要生产出类似字符的结构,还要利用及时的工程技术生产出稳定的结构。最后,对比赛结果进行了讨论,为今后的研究和比赛提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信