Xin Cheng , Jianing Sun , Kai Ling , Keyi Zhong , Bolin Shao , Lan Li , Shanshan Zhao , Yi Huang , Hao Song , Bo Cheng
{"title":"Geochemical and U-Pb isotopic insights into uranium (U) enrichment in the soil around a nuclear fuel element plant, in Southwest China","authors":"Xin Cheng , Jianing Sun , Kai Ling , Keyi Zhong , Bolin Shao , Lan Li , Shanshan Zhao , Yi Huang , Hao Song , Bo Cheng","doi":"10.1016/j.oreoa.2024.100045","DOIUrl":null,"url":null,"abstract":"<div><p>To assess the impact of nuclear fuel element processing on uranium(U) in the soil environment, a geochemical survey was conducted. The survey provided data on U concentration, speciation, Th/U ratio, and U and Pb isotopic composition in the soil around a nuclear fuel processing plant in Southwest China, which has been operational since 1965, to reveal the enrichment status and sources of U in the soil. The concentrations of Th and Pb in the soil were also compared. The average U concentration was 1.01-1.43 times that of the local background, and U existed primarily as residual U. The enrichment factor value indicates that U is slightly enriched in the soil. The Th/U ratio was higher than the crustal ratio and the world soil average value, indicating that some of the U in the soil has been lost due to surface runoff. The <sup>235</sup>U/<sup>238</sup>U ratio distribution shows that a certain amount of <sup>235</sup>U-enriched particles have sedimentation in the downwind direction of the plant soil, which results in a higher <sup>235</sup>U/<sup>238</sup>U ratio in this direction. However, in general, the <sup>235</sup>U/<sup>238</sup>U ratios were observed to be typical natural values. The <sup>207</sup>Pb/<sup>206</sup>Pb ratio indicates that the U in the U ore enters the soil during nuclear fuel processing.</p></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"16 ","pages":"Article 100045"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666261224000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the impact of nuclear fuel element processing on uranium(U) in the soil environment, a geochemical survey was conducted. The survey provided data on U concentration, speciation, Th/U ratio, and U and Pb isotopic composition in the soil around a nuclear fuel processing plant in Southwest China, which has been operational since 1965, to reveal the enrichment status and sources of U in the soil. The concentrations of Th and Pb in the soil were also compared. The average U concentration was 1.01-1.43 times that of the local background, and U existed primarily as residual U. The enrichment factor value indicates that U is slightly enriched in the soil. The Th/U ratio was higher than the crustal ratio and the world soil average value, indicating that some of the U in the soil has been lost due to surface runoff. The 235U/238U ratio distribution shows that a certain amount of 235U-enriched particles have sedimentation in the downwind direction of the plant soil, which results in a higher 235U/238U ratio in this direction. However, in general, the 235U/238U ratios were observed to be typical natural values. The 207Pb/206Pb ratio indicates that the U in the U ore enters the soil during nuclear fuel processing.