Green synthesis of metal oxides (CaO-K2O) catalyst using golden apple snail shell and cultivated banana peel for production of biofuel from non-edible Jatropha Curcas oil (JCO) via a central composite design (CCD)
{"title":"Green synthesis of metal oxides (CaO-K2O) catalyst using golden apple snail shell and cultivated banana peel for production of biofuel from non-edible Jatropha Curcas oil (JCO) via a central composite design (CCD)","authors":"Achanai Buasri, Jakorn Kamsuwan, Jukkrapong Dokput, Piyawat Buakaeo, Phacharapon Horthong, Vorrada Loryuenyong","doi":"10.1016/j.jscs.2024.101836","DOIUrl":null,"url":null,"abstract":"<div><p>The use of biomass as a renewable, sustainable, and eco-friendly energy source is now widely recognized as a potential solution for a variety of environmental problems. To develop biodiesel production, cost-effective feedstocks such as agricultural waste, food waste, and non-edible/waste cooking oil were utilized. A heterogeneous solid base catalyst was synthesized by calcining a mixture of waste golden apple snail shell (<em>Pomacea canaliculata</em>) and cultivated (<em>Musa sapientum</em>) banana peel. In transesterification process, potassium oxide (K<sub>2</sub>O) derived from banana peel is used as a cocatalyst to improve the catalytic activity of calcium oxide (CaO) catalyst derived from waste shell. The innovative CaO-K<sub>2</sub>O catalyst was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF) and the Brunauer-Emmett-Teller (BET) technique. The morphology and elemental composition of calcium (Ca), potassium (K), and oxygen (O) in the catalyst were validated by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). The CaO catalyst exhibited a BET surface area of 10.88 m<sup>2</sup>/g, which was enhanced to 14.62 m<sup>2</sup>/g upon combination with K<sub>2</sub>O. The Hammett indicator of CaO catalyst fell between 7.2 < H_< 9.8. However, the CaO-K<sub>2</sub>O catalyst exhibited a higher value of 15.0 < H_< 18.4, which could be attributed to the phase transition from CaO to CaO-K<sub>2</sub>O. To investigate the effects of catalyst concentration, ethanol/oil molar ratio, and transesterification time on the yield of fatty acid ethyl ester (FAEE). The optimal conditions for FAEE synthesis were determined using a central composite design (CCD) approach with response surface methodology (RSM). The regression equation obtained for the CCD model has a determination coefficient (R<sup>2</sup>) of 0.9921, indicating that this model is well-fitted. At 3.69 wt% catalyst concentration, 19.48:1 ethanol/oil molar ratio, and 1.80 h transesterification time, the highest FAEE yield from <em>Jatropha Curcas</em> oil (JCO) of 97.06 % was obtained. The novel catalyst has a strong yield and can be utilized for up to 6 cycles. It was found that the corresponding yield was 90 % when employing the same process parameters, demonstrating the high reusability of this catalyst. The biodiesel produced from non-edible JCO meets the criteria for standard biodiesel (ASTM D-6751 and EN 14214). The CaO-K<sub>2</sub>O catalyst is inexpensive, easy to make, biodegradable, recyclable, and environmentally friendly because it is derived from a biological residue. Because of these characteristics, it may be an appropriate candidate for the role of “green catalyst” in sustainable energy production.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101836"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000310/pdfft?md5=e0fac0f2c1e60ade854c2dbcc815cd8c&pid=1-s2.0-S1319610324000310-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000310","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of biomass as a renewable, sustainable, and eco-friendly energy source is now widely recognized as a potential solution for a variety of environmental problems. To develop biodiesel production, cost-effective feedstocks such as agricultural waste, food waste, and non-edible/waste cooking oil were utilized. A heterogeneous solid base catalyst was synthesized by calcining a mixture of waste golden apple snail shell (Pomacea canaliculata) and cultivated (Musa sapientum) banana peel. In transesterification process, potassium oxide (K2O) derived from banana peel is used as a cocatalyst to improve the catalytic activity of calcium oxide (CaO) catalyst derived from waste shell. The innovative CaO-K2O catalyst was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF) and the Brunauer-Emmett-Teller (BET) technique. The morphology and elemental composition of calcium (Ca), potassium (K), and oxygen (O) in the catalyst were validated by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). The CaO catalyst exhibited a BET surface area of 10.88 m2/g, which was enhanced to 14.62 m2/g upon combination with K2O. The Hammett indicator of CaO catalyst fell between 7.2 < H_< 9.8. However, the CaO-K2O catalyst exhibited a higher value of 15.0 < H_< 18.4, which could be attributed to the phase transition from CaO to CaO-K2O. To investigate the effects of catalyst concentration, ethanol/oil molar ratio, and transesterification time on the yield of fatty acid ethyl ester (FAEE). The optimal conditions for FAEE synthesis were determined using a central composite design (CCD) approach with response surface methodology (RSM). The regression equation obtained for the CCD model has a determination coefficient (R2) of 0.9921, indicating that this model is well-fitted. At 3.69 wt% catalyst concentration, 19.48:1 ethanol/oil molar ratio, and 1.80 h transesterification time, the highest FAEE yield from Jatropha Curcas oil (JCO) of 97.06 % was obtained. The novel catalyst has a strong yield and can be utilized for up to 6 cycles. It was found that the corresponding yield was 90 % when employing the same process parameters, demonstrating the high reusability of this catalyst. The biodiesel produced from non-edible JCO meets the criteria for standard biodiesel (ASTM D-6751 and EN 14214). The CaO-K2O catalyst is inexpensive, easy to make, biodegradable, recyclable, and environmentally friendly because it is derived from a biological residue. Because of these characteristics, it may be an appropriate candidate for the role of “green catalyst” in sustainable energy production.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.