{"title":"Field performance analysis of solar cell designs","authors":"Sungho Hwang , Dongchul Suh , Yoonmook Kang","doi":"10.1016/j.powera.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzes the field performance of various solar cell designs. Most research and development efforts concerning solar cells aim to increase their efficiency or power under standard test conditions (STC). However, conducting an actual field performance analysis is crucial because of the various ambient conditions present in the field, including temperature, irradiance, PV system installation, and albedo. These conditions can result in different performance results compared to STC. This study compares and analyzes case studies to assess field performance. One particular case study compares the field performance of monofacial modules with a monofacial passivated emitter and rear cell (PERC) and bifacial PERC at a carport system in the ambient conditions of the Korean Peninsula during summer and winter. The module material properties (white EVA and white backsheet) can impact module performance owing to the transmittance spectra at longer wavelengths. Certain transmittance values also contribute to the bifaciality number. Although the monofacial cell demonstrates better STC results, the field performance of the bifacial cell is superior in terms of energy yield and cost-effectiveness. Therefore, this study highlights the importance of considering the field performance (energy yield), in addition to STC, when designing solar cells and modules.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000118/pdfft?md5=786090fbb89d83e7b34e3dfaee453a7f&pid=1-s2.0-S2666248524000118-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzes the field performance of various solar cell designs. Most research and development efforts concerning solar cells aim to increase their efficiency or power under standard test conditions (STC). However, conducting an actual field performance analysis is crucial because of the various ambient conditions present in the field, including temperature, irradiance, PV system installation, and albedo. These conditions can result in different performance results compared to STC. This study compares and analyzes case studies to assess field performance. One particular case study compares the field performance of monofacial modules with a monofacial passivated emitter and rear cell (PERC) and bifacial PERC at a carport system in the ambient conditions of the Korean Peninsula during summer and winter. The module material properties (white EVA and white backsheet) can impact module performance owing to the transmittance spectra at longer wavelengths. Certain transmittance values also contribute to the bifaciality number. Although the monofacial cell demonstrates better STC results, the field performance of the bifacial cell is superior in terms of energy yield and cost-effectiveness. Therefore, this study highlights the importance of considering the field performance (energy yield), in addition to STC, when designing solar cells and modules.