Substitution-dynamics and invariant measures for infinite alphabet-path space

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Sergey Bezuglyi , Palle E.T. Jorgensen , Shrey Sanadhya
{"title":"Substitution-dynamics and invariant measures for infinite alphabet-path space","authors":"Sergey Bezuglyi ,&nbsp;Palle E.T. Jorgensen ,&nbsp;Shrey Sanadhya","doi":"10.1016/j.aam.2024.102687","DOIUrl":null,"url":null,"abstract":"<div><p>We study substitutions on a countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as <em>left determined</em>. In this setting of Borel dynamics, using a stationary generalized Bratteli-Vershik model, we provide a new and canonical construction of shift-invariant measures (both finite and infinite) for the associated class of subshifts.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000186","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study substitutions on a countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as left determined. In this setting of Borel dynamics, using a stationary generalized Bratteli-Vershik model, we provide a new and canonical construction of shift-invariant measures (both finite and infinite) for the associated class of subshifts.

无限字母路径空间的置换动力学和不变度量
我们将可数无限字母表上的替换(无压缩)作为伯尔动力系统来研究。我们为一类被称为左确定的替换构建了静态和非静态广义布拉泰利-韦希克模型。在这种博尔动力学环境下,利用静态广义布拉泰利-韦希克模型,我们为相关的子移动类提供了一种新的移动不变度量(有限和无限)的典型构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信