Transient but not chronic hyperglycemia accelerates ocular glymphatic transport.

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Christine Delle, Xiaowei Wang, Michael Giannetto, Evan Newbold, Weiguo Peng, Ryszard Stefan Gomolka, Antonio Ladrón-de-Guevara, Neža Cankar, Elise Schiøler Nielsen, Celia Kjaerby, Pia Weikop, Yuki Mori, Maiken Nedergaard
{"title":"Transient but not chronic hyperglycemia accelerates ocular glymphatic transport.","authors":"Christine Delle, Xiaowei Wang, Michael Giannetto, Evan Newbold, Weiguo Peng, Ryszard Stefan Gomolka, Antonio Ladrón-de-Guevara, Neža Cankar, Elise Schiøler Nielsen, Celia Kjaerby, Pia Weikop, Yuki Mori, Maiken Nedergaard","doi":"10.1186/s12987-024-00524-w","DOIUrl":null,"url":null,"abstract":"<p><p>Glymphatic transport is vital for the physiological homeostasis of the retina and optic nerve. Pathological alterations of ocular glymphatic fluid transport and enlarged perivascular spaces have been described in glaucomatous mice. It remains to be established how diabetic retinopathy, which impairs vision in about 50% of diabetes patients, impacts ocular glymphatic fluid transport. Here, we examined ocular glymphatic transport in chronic hyperglycemic diabetic mice as well as in healthy mice experiencing a daily transient increase in blood glucose. Mice suffering from severe diabetes for two and four months, induced by streptozotocin, exhibited no alterations in ocular glymphatic fluid transport in the optic nerve compared to age-matched, non-diabetic controls. In contrast, transient increases in blood glucose induced by repeated daily glucose injections in healthy, awake, non-diabetic mice accelerated antero- and retrograde ocular glymphatic transport. Structural analysis showed enlarged perivascular spaces in the optic nerves of glucose-treated mice, which were absent in diabetic mice. Thus, transient repeated hyperglycemic events, but not constant hyperglycemia, ultimately enlarge perivascular spaces in the murine optic nerve. These findings indicate that fluid transport in the mouse eye is vulnerable to fluctuating glycemic levels rather than constant hyperglycemia, suggesting that poor glycemic control drives glymphatic malfunction and perivascular enlargement in the optic nerve.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"26"},"PeriodicalIF":5.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00524-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glymphatic transport is vital for the physiological homeostasis of the retina and optic nerve. Pathological alterations of ocular glymphatic fluid transport and enlarged perivascular spaces have been described in glaucomatous mice. It remains to be established how diabetic retinopathy, which impairs vision in about 50% of diabetes patients, impacts ocular glymphatic fluid transport. Here, we examined ocular glymphatic transport in chronic hyperglycemic diabetic mice as well as in healthy mice experiencing a daily transient increase in blood glucose. Mice suffering from severe diabetes for two and four months, induced by streptozotocin, exhibited no alterations in ocular glymphatic fluid transport in the optic nerve compared to age-matched, non-diabetic controls. In contrast, transient increases in blood glucose induced by repeated daily glucose injections in healthy, awake, non-diabetic mice accelerated antero- and retrograde ocular glymphatic transport. Structural analysis showed enlarged perivascular spaces in the optic nerves of glucose-treated mice, which were absent in diabetic mice. Thus, transient repeated hyperglycemic events, but not constant hyperglycemia, ultimately enlarge perivascular spaces in the murine optic nerve. These findings indicate that fluid transport in the mouse eye is vulnerable to fluctuating glycemic levels rather than constant hyperglycemia, suggesting that poor glycemic control drives glymphatic malfunction and perivascular enlargement in the optic nerve.

一过性高血糖会加速眼部甘油转运,但慢性高血糖不会。
甘油运输对视网膜和视神经的生理平衡至关重要。青光眼小鼠的眼底甘油运输发生了病理改变,血管周围空间扩大。糖尿病视网膜病变会损害约 50% 的糖尿病患者的视力,而糖尿病视网膜病变是如何影响眼底甘液转运的仍有待确定。在这里,我们研究了慢性高血糖糖尿病小鼠和每天血糖短暂升高的健康小鼠的眼部甘液转运。与年龄匹配的非糖尿病对照组相比,链脲佐菌素诱导的患有两个月和四个月严重糖尿病的小鼠在视神经中的眼部甘液运输没有发生任何改变。相反,在健康、清醒的非糖尿病小鼠中,每天重复注射葡萄糖诱导的血糖短暂升高会加速眼底甘液的前向和逆向运输。结构分析表明,经葡萄糖处理的小鼠视神经周围血管间隙增大,而糖尿病小鼠则没有这种现象。因此,短暂反复的高血糖事件,而非持续的高血糖,最终会扩大小鼠视神经的血管周围空间。这些研究结果表明,小鼠眼球中的液体运输易受波动的血糖水平而非持续的高血糖的影响,这表明血糖控制不良会导致视神经的血糖功能失常和血管周围空间扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信