Rational Construction and Efficient Regulation of Stable and Long-Lived Charge-Separation State in Fullerene Materials

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chong Wang, Bo Wu* and Chunru Wang*, 
{"title":"Rational Construction and Efficient Regulation of Stable and Long-Lived Charge-Separation State in Fullerene Materials","authors":"Chong Wang,&nbsp;Bo Wu* and Chunru Wang*,&nbsp;","doi":"10.1021/accountsmr.3c00247","DOIUrl":null,"url":null,"abstract":"<p >Photoinduced charge separation (CS) ensures efficient light-energy conversion. The stable and long-lived charge-separation state (CSs) is beneficial for suppressing charge recombination and facilitating the separation of highly reduction-active electrons or highly oxidation-active holes to participate in subsequent photoreactions. Accordingly, the construction of stable and long-lived charge-separation states has been an important goal for researchers. These results highlighted the importance of fullerene materials. Characterized by their well-defined and stable structures and exceptional electronic properties, fullerenes have emerged as prominent electron acceptors. The energy levels and excited-state electron transfer features can be modulated by altering the carbon cage (selecting diverse carbon-cage configurations), embedding clusters (metallofullerenes), or modifying the functional groups on the carbon cage (fullerene additive reactions). Importantly, the low electron reorganization energy of fullerenes makes them promising materials for constructing long-lived CSs. Therefore, researchers commonly employ fullerenes as acceptors to design photoelectric materials or investigate their fundamental charge separation mechanisms. The primary task is to construct stable CSs through system design and extend the lifetime of CSs according to appropriate regulations. However, critical challenges stem from the inadequate comprehension of CS patterns, unsuitable system choices, and lack of simple and efficient strategies for CS regulation. Therefore, our research approach, which originates from the inherent principles of CS, aims to explore strategies for constructing and regulating stable and long-lived CSs in fullerene derivatives.</p><p >In this Account, we systematically summarize the following three aspects of charge separation in fullerene materials. (1) Construction of thermodynamically stable CSs. We established a mathematical correlation between the external modifying groups and the HOMO energy levels, enabling a rapid and straightforward prediction of the stability of CSs. Stable CSs can be successfully constructed by increasing the HOMO of the donor, lowering the LUMO of the acceptor, or altering the direction of the CSs. (2) Develop kinetic regulation strategies to extend CSs lifetime. We found that the meta- or ortho-substituted configuration determines the excited-state charge localization, effectively slowing charge recombination and thus prolonging the CSs lifetime. Additionally, our findings indicate that restricting molecular conformational changes can extend the CSs lifetime. Strategies for conformational regulation, including redox regulation and the introduction of steric hindrance, were subsequently designed. (3) Potential applications of stable and long-lived CSs. We primarily elucidated the applications of CSs in photovoltaics and photocatalysis (hydrogen production and NAD<sup>+</sup> regeneration). Stable and long-lived CSs ensures effective charge separation and photogenerated carrier transport, which are important for efficient photovoltaic and photocatalytic reactions. Finally, aiming for a prolonged lifetime, more universal and efficient regulation strategies, and broader applications of the charge-separation state, we propose some perspectives that can be further applied to fullerene-based materials.</p>","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"5 4","pages":"426–437"},"PeriodicalIF":14.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/accountsmr.3c00247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoinduced charge separation (CS) ensures efficient light-energy conversion. The stable and long-lived charge-separation state (CSs) is beneficial for suppressing charge recombination and facilitating the separation of highly reduction-active electrons or highly oxidation-active holes to participate in subsequent photoreactions. Accordingly, the construction of stable and long-lived charge-separation states has been an important goal for researchers. These results highlighted the importance of fullerene materials. Characterized by their well-defined and stable structures and exceptional electronic properties, fullerenes have emerged as prominent electron acceptors. The energy levels and excited-state electron transfer features can be modulated by altering the carbon cage (selecting diverse carbon-cage configurations), embedding clusters (metallofullerenes), or modifying the functional groups on the carbon cage (fullerene additive reactions). Importantly, the low electron reorganization energy of fullerenes makes them promising materials for constructing long-lived CSs. Therefore, researchers commonly employ fullerenes as acceptors to design photoelectric materials or investigate their fundamental charge separation mechanisms. The primary task is to construct stable CSs through system design and extend the lifetime of CSs according to appropriate regulations. However, critical challenges stem from the inadequate comprehension of CS patterns, unsuitable system choices, and lack of simple and efficient strategies for CS regulation. Therefore, our research approach, which originates from the inherent principles of CS, aims to explore strategies for constructing and regulating stable and long-lived CSs in fullerene derivatives.

In this Account, we systematically summarize the following three aspects of charge separation in fullerene materials. (1) Construction of thermodynamically stable CSs. We established a mathematical correlation between the external modifying groups and the HOMO energy levels, enabling a rapid and straightforward prediction of the stability of CSs. Stable CSs can be successfully constructed by increasing the HOMO of the donor, lowering the LUMO of the acceptor, or altering the direction of the CSs. (2) Develop kinetic regulation strategies to extend CSs lifetime. We found that the meta- or ortho-substituted configuration determines the excited-state charge localization, effectively slowing charge recombination and thus prolonging the CSs lifetime. Additionally, our findings indicate that restricting molecular conformational changes can extend the CSs lifetime. Strategies for conformational regulation, including redox regulation and the introduction of steric hindrance, were subsequently designed. (3) Potential applications of stable and long-lived CSs. We primarily elucidated the applications of CSs in photovoltaics and photocatalysis (hydrogen production and NAD+ regeneration). Stable and long-lived CSs ensures effective charge separation and photogenerated carrier transport, which are important for efficient photovoltaic and photocatalytic reactions. Finally, aiming for a prolonged lifetime, more universal and efficient regulation strategies, and broader applications of the charge-separation state, we propose some perspectives that can be further applied to fullerene-based materials.

Abstract Image

Abstract Image

富勒烯材料中稳定长效电荷分离态的合理构建与高效调控
光诱导电荷分离(CS)可确保高效的光能转换。稳定而长效的电荷分离态(CSs)有利于抑制电荷重组,促进高还原活性电子或高氧化活性空穴的分离,从而参与后续的光反应。因此,构建稳定且长寿命的电荷分离态一直是研究人员的重要目标。这些成果凸显了富勒烯材料的重要性。富勒烯具有定义明确的稳定结构和优异的电子特性,已成为重要的电子受体。能级和激发态电子转移特性可通过改变碳笼(选择不同的碳笼构型)、嵌入团簇(金属富勒烯)或改变碳笼上的官能团(富勒烯添加反应)来调节。重要的是,富勒烯的电子重组能较低,是构建长寿命 CS 的理想材料。因此,研究人员通常采用富勒烯作为受体来设计光电材料或研究其基本电荷分离机制。首要任务是通过系统设计构建稳定的 CS,并根据相关规定延长 CS 的寿命。然而,由于对 CS 模式的理解不足、系统选择不合适以及缺乏简单有效的 CS 调节策略,因此面临着严峻的挑战。因此,我们的研究方法源于 CS 的固有原理,旨在探索在富勒烯衍生物中构建和调控稳定长寿命 CS 的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信