Sheng Li, Zewen Yao, Li Wang, Li Ma, Yongze He, Xuefeng Ban
{"title":"Research on the Factors Influencing the Seismic Performance of Grouting Sleeve Assembled Double-Column Piers","authors":"Sheng Li, Zewen Yao, Li Wang, Li Ma, Yongze He, Xuefeng Ban","doi":"10.1155/2024/6938870","DOIUrl":null,"url":null,"abstract":"The present study investigated the influence of key design parameters on the seismic performance of prefabricated precast assembled piers’ connection parts to better adapt to the industrialized construction of prefabricated precast assembled pier connected using grouting sleeves. Relying on a prefabricated assembled bridge in the actual project, the ABAQUS software was used to establish a refined solid finite element model of prefabricated assembled piers connected with grouting sleeves. Numerical simulation analysis was conducted for the piers with low circumferential reciprocating loading. The seismic performance of the prefabricated assembled piers was evaluated in terms of hysteresis characteristics, dissipation characteristics, and damage development. The effects of the length of the grouting sleeve and the diameter of the longitudinal reinforcement on the seismic performance were also investigated. The maximum error between the numerical simulation results and the test results was 5.7%, and the plastic region of the precast assembled pier obtained from the numerical simulation was consistent with the test results, indicating that the numerical simulation method is accurate and reliable. When the length of the grouting sleeve increased from 0.6 to 1.2 m, the yield load, peak load, and dissipation of energy of prefabricated assembled piers increased by 11.6%, 10.9%, and 11.4%, respectively; no significant change in residual displacement; ductility coefficient decreased by a small amount. When the longitudinal reinforcement diameter increased from 20 to 50 mm, prefabricated assembled piers yield load, peak load, and dissipation increased by 99.6%, 89.3%, and 218.9%, respectively, whereas the residual displacement increased by 137.3%, and the ductility coefficient decreased more. Increasing the length of the grouting sleeve or increasing the diameter of longitudinal reinforcement improved the stiffness of the piers, causing the piers to displace less and damage less under the same force, but the residual displacement would increase.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"110 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6938870","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigated the influence of key design parameters on the seismic performance of prefabricated precast assembled piers’ connection parts to better adapt to the industrialized construction of prefabricated precast assembled pier connected using grouting sleeves. Relying on a prefabricated assembled bridge in the actual project, the ABAQUS software was used to establish a refined solid finite element model of prefabricated assembled piers connected with grouting sleeves. Numerical simulation analysis was conducted for the piers with low circumferential reciprocating loading. The seismic performance of the prefabricated assembled piers was evaluated in terms of hysteresis characteristics, dissipation characteristics, and damage development. The effects of the length of the grouting sleeve and the diameter of the longitudinal reinforcement on the seismic performance were also investigated. The maximum error between the numerical simulation results and the test results was 5.7%, and the plastic region of the precast assembled pier obtained from the numerical simulation was consistent with the test results, indicating that the numerical simulation method is accurate and reliable. When the length of the grouting sleeve increased from 0.6 to 1.2 m, the yield load, peak load, and dissipation of energy of prefabricated assembled piers increased by 11.6%, 10.9%, and 11.4%, respectively; no significant change in residual displacement; ductility coefficient decreased by a small amount. When the longitudinal reinforcement diameter increased from 20 to 50 mm, prefabricated assembled piers yield load, peak load, and dissipation increased by 99.6%, 89.3%, and 218.9%, respectively, whereas the residual displacement increased by 137.3%, and the ductility coefficient decreased more. Increasing the length of the grouting sleeve or increasing the diameter of longitudinal reinforcement improved the stiffness of the piers, causing the piers to displace less and damage less under the same force, but the residual displacement would increase.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.