Efficacy of films of uncapped gold nanoparticle as electrodes for direct electron transfer to redox proteins

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Kentaro Akiyama , Hirotaka Okabe , Taisei Motomura , Naoki Matsuda , Yasuhiro Mie
{"title":"Efficacy of films of uncapped gold nanoparticle as electrodes for direct electron transfer to redox proteins","authors":"Kentaro Akiyama ,&nbsp;Hirotaka Okabe ,&nbsp;Taisei Motomura ,&nbsp;Naoki Matsuda ,&nbsp;Yasuhiro Mie","doi":"10.1016/j.elecom.2024.107695","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical manipulation of enzymes is expected to enable the rapid detection of marker molecules and the efficient production of valuable materials. We have fabricated an Au nanoparticle (AuNP) thin film electrode in our previous study, which enables more enhanced heterogeneous electron transfer reactions than a conventional planner Au electrode. In this study, electrochemical evaluation of cytochrome <em>c</em> was performed using the AuNP thin film electrodes with and without self-assembled monolayer (SAM) modification to assess its practicality for protein electrochemistry. The 4-pyridinethiol- and 7-carboxy-1-heptanethiol-modified AuNP thin film electrodes showed much larger faradaic current values attributed to redox reactions compared to those of the Au electrodes. The results indicate that the nanostructural effects of the AuNP thin film electrode are beneficial. Importantly, even when the non-modified (bare) AuNP thin film electrode was applied, it exhibited the clear electrochemical response of cyt <em>c</em>, while the bare Au electrode showed no such a response. This study provides evidence that the AuNP thin film electrode functions as a potent bioelectrocatalysts due to the nanostructure-specific properties.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107695"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000389/pdfft?md5=f55da446d307c81f2afb67c2d4d39f8b&pid=1-s2.0-S1388248124000389-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000389","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical manipulation of enzymes is expected to enable the rapid detection of marker molecules and the efficient production of valuable materials. We have fabricated an Au nanoparticle (AuNP) thin film electrode in our previous study, which enables more enhanced heterogeneous electron transfer reactions than a conventional planner Au electrode. In this study, electrochemical evaluation of cytochrome c was performed using the AuNP thin film electrodes with and without self-assembled monolayer (SAM) modification to assess its practicality for protein electrochemistry. The 4-pyridinethiol- and 7-carboxy-1-heptanethiol-modified AuNP thin film electrodes showed much larger faradaic current values attributed to redox reactions compared to those of the Au electrodes. The results indicate that the nanostructural effects of the AuNP thin film electrode are beneficial. Importantly, even when the non-modified (bare) AuNP thin film electrode was applied, it exhibited the clear electrochemical response of cyt c, while the bare Au electrode showed no such a response. This study provides evidence that the AuNP thin film electrode functions as a potent bioelectrocatalysts due to the nanostructure-specific properties.

Abstract Image

未封口金纳米粒子薄膜作为直接电子传递到氧化还原蛋白的电极的功效
[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信