Zhongkai Deng , Qizhen Zhou , Jianchun Xing , Qiliang Yang , Yin Chen , Hu Zhang , Zhaoyi Chen , Deyu Deng , Yixin Mo , Bowei Feng
{"title":"Inferring in-air gestures in complex indoor environment with less supervision","authors":"Zhongkai Deng , Qizhen Zhou , Jianchun Xing , Qiliang Yang , Yin Chen , Hu Zhang , Zhaoyi Chen , Deyu Deng , Yixin Mo , Bowei Feng","doi":"10.1016/j.pmcj.2024.101904","DOIUrl":null,"url":null,"abstract":"<div><p>People have high demands for comfort and technology in indoor environments. Gestures, as a natural and friendly human computer interaction (HCI) method, have received widespread attention and have been the subject of many research studies. Traditional approaches are based on wearable devices and cameras, which can be cumbersome to operate and infringe upon users’ privacy. Millimeter-wave (mmWave) radar avoids these problems by detecting gestures in a noninvasive manner. However, it encounters practical challenges in complex indoor environments, such as dynamic disturbance from surroundings, variable usage conditions and diverse gesture patterns, which conventionally require considerable manual effort to address. In this paper, we attempt to minimize human supervision and propose a noninvasive gesture recognition method named RaGe that involves a commercial mmWave indoor radar. First, a parameter optimization framework considering gesture prior constraints is proposed for radar configuration, which functions to weaken the disturbance from surroundings. Second, we alleviate data shortages in variable usage conditions and achieve low-cost data augmentation by applying affine transformations. Third, we combine deformable convolution operations with an unsupervised attention mechanism, thus exploring the intrinsic features involved in diverse gesture patterns. Experimental results show that RaGe is able to recognize 7 gestures with 99.3% accuracy and less human supervision, surpassing the state-of-the-art methods in comparative experiments.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000300","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
People have high demands for comfort and technology in indoor environments. Gestures, as a natural and friendly human computer interaction (HCI) method, have received widespread attention and have been the subject of many research studies. Traditional approaches are based on wearable devices and cameras, which can be cumbersome to operate and infringe upon users’ privacy. Millimeter-wave (mmWave) radar avoids these problems by detecting gestures in a noninvasive manner. However, it encounters practical challenges in complex indoor environments, such as dynamic disturbance from surroundings, variable usage conditions and diverse gesture patterns, which conventionally require considerable manual effort to address. In this paper, we attempt to minimize human supervision and propose a noninvasive gesture recognition method named RaGe that involves a commercial mmWave indoor radar. First, a parameter optimization framework considering gesture prior constraints is proposed for radar configuration, which functions to weaken the disturbance from surroundings. Second, we alleviate data shortages in variable usage conditions and achieve low-cost data augmentation by applying affine transformations. Third, we combine deformable convolution operations with an unsupervised attention mechanism, thus exploring the intrinsic features involved in diverse gesture patterns. Experimental results show that RaGe is able to recognize 7 gestures with 99.3% accuracy and less human supervision, surpassing the state-of-the-art methods in comparative experiments.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.