{"title":"Advantages of integrating Brillouin microscopy in multimodal mechanical mapping of cells and tissues","authors":"Chenchen Handler , Claudia Testi , Giuliano Scarcelli","doi":"10.1016/j.ceb.2024.102341","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research has highlighted the growing significance of the mechanical properties of cells and tissues in the proper execution of physiological functions within an organism; alterations to these properties can potentially result in various diseases. These mechanical properties can be assessed using various techniques that vary in spatial and temporal resolutions as well as applications. Due to the wide range of mechanical behaviors exhibited by cells and tissues, a singular mapping technique may be insufficient in capturing their complexity and nuance. Consequently, by utilizing a combination of methods–multimodal mechanical mapping–researchers can achieve a more comprehensive characterization of mechanical properties, encompassing factors such as stiffness, modulus, viscoelasticity, and forces. Furthermore, different mapping techniques can provide complementary information and enable the exploration of spatial and temporal variations to enhance our understanding of cellular dynamics and tissue mechanics. By capitalizing on the unique strengths of each method while mitigating their respective limitations, a more precise and holistic understanding of cellular and tissue mechanics can be obtained. Here, we spotlight Brillouin microscopy (BM) as a noncontact, noninvasive, and label-free mechanical mapping modality to be coutilized alongside established mechanical probing methods. This review summarizes some of the most widely adopted individual mechanical mapping techniques and highlights several recent multimodal approaches demonstrating their utility. We envision that future studies aim to adopt multimodal techniques to drive advancements in the broader realm of mechanobiology.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000206","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research has highlighted the growing significance of the mechanical properties of cells and tissues in the proper execution of physiological functions within an organism; alterations to these properties can potentially result in various diseases. These mechanical properties can be assessed using various techniques that vary in spatial and temporal resolutions as well as applications. Due to the wide range of mechanical behaviors exhibited by cells and tissues, a singular mapping technique may be insufficient in capturing their complexity and nuance. Consequently, by utilizing a combination of methods–multimodal mechanical mapping–researchers can achieve a more comprehensive characterization of mechanical properties, encompassing factors such as stiffness, modulus, viscoelasticity, and forces. Furthermore, different mapping techniques can provide complementary information and enable the exploration of spatial and temporal variations to enhance our understanding of cellular dynamics and tissue mechanics. By capitalizing on the unique strengths of each method while mitigating their respective limitations, a more precise and holistic understanding of cellular and tissue mechanics can be obtained. Here, we spotlight Brillouin microscopy (BM) as a noncontact, noninvasive, and label-free mechanical mapping modality to be coutilized alongside established mechanical probing methods. This review summarizes some of the most widely adopted individual mechanical mapping techniques and highlights several recent multimodal approaches demonstrating their utility. We envision that future studies aim to adopt multimodal techniques to drive advancements in the broader realm of mechanobiology.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.