MACHINE-LEARNING-BASED PREDICTIVE CLASSIFIER FOR BONE MARROW FAILURE SYNDROME USING COMPLETE BLOOD COUNT AND CELL POPULATION DATA

IF 0.7 Q4 HEMATOLOGY
J. Seo , C. Lee , Y. Koh , C.H. Sun , J.-M. Lee , H. An , M. Kim
{"title":"MACHINE-LEARNING-BASED PREDICTIVE CLASSIFIER FOR BONE MARROW FAILURE SYNDROME USING COMPLETE BLOOD COUNT AND CELL POPULATION DATA","authors":"J. Seo ,&nbsp;C. Lee ,&nbsp;Y. Koh ,&nbsp;C.H. Sun ,&nbsp;J.-M. Lee ,&nbsp;H. An ,&nbsp;M. Kim","doi":"10.1016/j.lrr.2024.100419","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Accurate risk assessment of bone marrow failure syndrome (BMFS) is crucial for early diagnosis and intervention.</p></div><div><h3>Methods</h3><p>We used complete blood count (CBC) data to develop a predictive model for BMFS. Retrospective CBC data were collected from Seoul National University Hospital and Seoul St. Mary's Hospital of the Catholic Medical Center in South Korea. We developed binary classifiers for aplastic anaemia (AA) and myelodysplastic syndrome (MDS) and generated a BMFS classifier to determine the maximum probability. Classifiers were developed using multiple feature sets consisting of 13, 17, 25, or 28 CBC features to ensure applicability to various CBC testing settings. Performance was evaluated using the area under the receiver operating characteristic curve (AUROC).</p></div><div><h3>Results</h3><p>XGBoost achieved the best AUROCs, 0·953–0·961 for the AA classifier and 0·910–0·935 for the MDS classifier, across multiple CBC feature sets. The BMFS classifier, combining the AA and MDS classifiers, demonstrated an AUROC of 0·915–0·936. When using cut-off probabilities to achieve a 95% sensitivity, the specificities ranged from 68% to 79%. External validation on an independent dataset yielded an AUROC of 0·932–0·942, a sensitivity of 93–96%, and a specificity of 65–82% at the aforementioned cut-offs.</p></div><div><h3>Conclusions</h3><p>Our predictive model provides a practical guide for diagnosing BMFS based on basic demographics and CBC data available during the first clinical encounter. It provides a reliable risk assessment tool for primary physicians, facilitating a more effective triage, timely referrals, and improved patient care.</p></div>","PeriodicalId":38435,"journal":{"name":"Leukemia Research Reports","volume":"21 ","pages":"Article 100419"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213048924000098/pdfft?md5=19ebce038be1abecd2d1fc4fb7c72b94&pid=1-s2.0-S2213048924000098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia Research Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213048924000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Accurate risk assessment of bone marrow failure syndrome (BMFS) is crucial for early diagnosis and intervention.

Methods

We used complete blood count (CBC) data to develop a predictive model for BMFS. Retrospective CBC data were collected from Seoul National University Hospital and Seoul St. Mary's Hospital of the Catholic Medical Center in South Korea. We developed binary classifiers for aplastic anaemia (AA) and myelodysplastic syndrome (MDS) and generated a BMFS classifier to determine the maximum probability. Classifiers were developed using multiple feature sets consisting of 13, 17, 25, or 28 CBC features to ensure applicability to various CBC testing settings. Performance was evaluated using the area under the receiver operating characteristic curve (AUROC).

Results

XGBoost achieved the best AUROCs, 0·953–0·961 for the AA classifier and 0·910–0·935 for the MDS classifier, across multiple CBC feature sets. The BMFS classifier, combining the AA and MDS classifiers, demonstrated an AUROC of 0·915–0·936. When using cut-off probabilities to achieve a 95% sensitivity, the specificities ranged from 68% to 79%. External validation on an independent dataset yielded an AUROC of 0·932–0·942, a sensitivity of 93–96%, and a specificity of 65–82% at the aforementioned cut-offs.

Conclusions

Our predictive model provides a practical guide for diagnosing BMFS based on basic demographics and CBC data available during the first clinical encounter. It provides a reliable risk assessment tool for primary physicians, facilitating a more effective triage, timely referrals, and improved patient care.

利用全血细胞计数和细胞群数据,基于机器学习的骨髓衰竭综合征预测分类器
简介:准确评估骨髓衰竭综合征(BMFS)的风险对于早期诊断和干预至关重要。我们利用全血细胞计数数据开发了骨髓衰竭综合征的预测模型。我们从韩国首尔国立大学医院和天主教医疗中心首尔圣玛丽医院收集了回顾性全血细胞计数数据。我们开发了再生障碍性贫血(AA)和骨髓增生异常综合征(MDS)的二元分类器,并生成了一个 BMFS 分类器,以确定最大概率。分类器的开发使用了由 13、17、25 或 28 个 CBC 特征组成的多个特征集,以确保适用于各种 CBC 测试环境。在多个 CBC 特征集中,XGBoost 取得了最佳的 AUROCs,AA 分类器为 0-953-0-961,MDS 分类器为 0-910-0-935。结合 AA 和 MDS 分类器的 BMFS 分类器的 AUROC 为 0-915-0-936。当使用临界概率达到 95% 的灵敏度时,特异性介于 68% 到 79% 之间。在一个独立数据集上进行外部验证后发现,在上述临界值下,AUROC 为 0-932-0-942,灵敏度为 93%-96%,特异度为 65%-82%。结论我们的预测模型为诊断 BMFS 提供了一个实用指南,该指南基于基本人口统计学和首次临床会诊时获得的全血细胞计数数据。它为基层医生提供了可靠的风险评估工具,有助于更有效地进行分诊、及时转诊和改善患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Leukemia Research Reports
Leukemia Research Reports Medicine-Oncology
CiteScore
1.70
自引率
0.00%
发文量
70
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信