{"title":"Landing and take-off capabilities of bioinspired aerial vehicles: a review.","authors":"Ahmad Hammad, Sophie F Armanini","doi":"10.1088/1748-3190/ad3263","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinspired flapping-wing micro aerial vehicles (FWMAVs) have emerged over the last two decades as a promising new type of robot. Their high thrust-to-weight ratio, versatility, safety, and maneuverability, especially at small scales, could make them more suitable than fixed-wing and multi-rotor vehicles for various applications, especially in cluttered, confined environments and in close proximity to humans, flora, and fauna. Unlike natural flyers, however, most FWMAVs currently have limited take-off and landing capabilities. Natural flyers are able to take off and land effortlessly from a wide variety of surfaces and in complex environments. Mimicking such capabilities on flapping-wing robots would considerably enhance their practical usage. This review presents an overview of take-off and landing techniques for FWMAVs, covering different approaches and mechanism designs, as well as dynamics and control aspects. The special case of perching is also included. As well as discussing solutions investigated for FWMAVs specifically, we also present solutions that have been developed for different types of robots but may be applicable to flapping-wing ones. Different approaches are compared and their suitability for different applications and types of robots is assessed. Moreover, research and technology gaps are identified, and promising future work directions are identified.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3263","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioinspired flapping-wing micro aerial vehicles (FWMAVs) have emerged over the last two decades as a promising new type of robot. Their high thrust-to-weight ratio, versatility, safety, and maneuverability, especially at small scales, could make them more suitable than fixed-wing and multi-rotor vehicles for various applications, especially in cluttered, confined environments and in close proximity to humans, flora, and fauna. Unlike natural flyers, however, most FWMAVs currently have limited take-off and landing capabilities. Natural flyers are able to take off and land effortlessly from a wide variety of surfaces and in complex environments. Mimicking such capabilities on flapping-wing robots would considerably enhance their practical usage. This review presents an overview of take-off and landing techniques for FWMAVs, covering different approaches and mechanism designs, as well as dynamics and control aspects. The special case of perching is also included. As well as discussing solutions investigated for FWMAVs specifically, we also present solutions that have been developed for different types of robots but may be applicable to flapping-wing ones. Different approaches are compared and their suitability for different applications and types of robots is assessed. Moreover, research and technology gaps are identified, and promising future work directions are identified.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.