Genetic heterogeneity and respiratory chain enzyme analysis in pediatric Indian patients with mitochondrial disorder: Report of novel variants in POLG1 gene and their functional implication using molecular dynamic simulation
Debolina Saha , Sonam Kothari , Shilpa Duttaprasanna Kulkarni , Menaka Thambiraja , Ragothaman M Yennamalli , Dhanjit K Das
{"title":"Genetic heterogeneity and respiratory chain enzyme analysis in pediatric Indian patients with mitochondrial disorder: Report of novel variants in POLG1 gene and their functional implication using molecular dynamic simulation","authors":"Debolina Saha , Sonam Kothari , Shilpa Duttaprasanna Kulkarni , Menaka Thambiraja , Ragothaman M Yennamalli , Dhanjit K Das","doi":"10.1016/j.mito.2024.101870","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondrial disorders are a heterogeneous group of disorders caused by mutations in the mitochondrial DNA or in nuclear genes encoding the mitochondrial proteins and subunits. Polymerase Gamma (POLG) is a nuclear gene and mutation in the POLG gene are one of the major causes of inherited mitochondrial disorders. In this study, 15 pediatric patients, with a wide spectrum of clinical phenotypes were screened using blood samples (n = 15) and muscle samples (n = 4). Respiratory chain enzyme analysis in the muscle samples revealed multi-complex deficiencies with Complex I deficiency present in (1/4) patients, Complex II (2/4), Complex III (3/4) and Complex IV (2/4) patients. Multiple large deletions were observed in 4/15 patients using LR-PCR. Whole exome sequencing (WES) revealed a compound heterozygous mutation consisting of a POLG1 novel variant (NP_002684.1:p.Trp261X) and a missense variant (NP_002684.1:p. Leu304Arg) in one patient and another patient harboring a novel homozygous POLG1 variant (NP_002684.1:p. Phe750Val). These variants (NP_002684.1:p. Leu304Arg) and (NP_002684.1:p. Phe750Val) and their interactions with DNA were modelled using molecular docking and molecular dynamics (MD) simulation studies. The protein conformation was analyzed as root mean square deviation (RMSD), root mean square fluctuation (RMSF) which showed local fluctuations in the mutants compared to the wildtype. However, Solvent Accessible Surface Area (SASA) significantly increased for NP_002684.1:p.Leu304Arg and decreased in NP_002684.1:p.Phe750Val mutants. Further, Contact Order analysis indicated that the Aromatic–sulfur interactions were destabilizing in the mutants. Overall, these <em>in-silico</em> analysis has revealed a destabilizing mutations suggesting pathogenic variants in POLG1 gene.</p></div>","PeriodicalId":18606,"journal":{"name":"Mitochondrion","volume":"76 ","pages":"Article 101870"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrion","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156772492400028X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial disorders are a heterogeneous group of disorders caused by mutations in the mitochondrial DNA or in nuclear genes encoding the mitochondrial proteins and subunits. Polymerase Gamma (POLG) is a nuclear gene and mutation in the POLG gene are one of the major causes of inherited mitochondrial disorders. In this study, 15 pediatric patients, with a wide spectrum of clinical phenotypes were screened using blood samples (n = 15) and muscle samples (n = 4). Respiratory chain enzyme analysis in the muscle samples revealed multi-complex deficiencies with Complex I deficiency present in (1/4) patients, Complex II (2/4), Complex III (3/4) and Complex IV (2/4) patients. Multiple large deletions were observed in 4/15 patients using LR-PCR. Whole exome sequencing (WES) revealed a compound heterozygous mutation consisting of a POLG1 novel variant (NP_002684.1:p.Trp261X) and a missense variant (NP_002684.1:p. Leu304Arg) in one patient and another patient harboring a novel homozygous POLG1 variant (NP_002684.1:p. Phe750Val). These variants (NP_002684.1:p. Leu304Arg) and (NP_002684.1:p. Phe750Val) and their interactions with DNA were modelled using molecular docking and molecular dynamics (MD) simulation studies. The protein conformation was analyzed as root mean square deviation (RMSD), root mean square fluctuation (RMSF) which showed local fluctuations in the mutants compared to the wildtype. However, Solvent Accessible Surface Area (SASA) significantly increased for NP_002684.1:p.Leu304Arg and decreased in NP_002684.1:p.Phe750Val mutants. Further, Contact Order analysis indicated that the Aromatic–sulfur interactions were destabilizing in the mutants. Overall, these in-silico analysis has revealed a destabilizing mutations suggesting pathogenic variants in POLG1 gene.
期刊介绍:
Mitochondrion is a definitive, high profile, peer-reviewed international research journal. The scope of Mitochondrion is broad, reporting on basic science of mitochondria from all organisms and from basic research to pathology and clinical aspects of mitochondrial diseases. The journal welcomes original contributions from investigators working in diverse sub-disciplines such as evolution, biophysics, biochemistry, molecular and cell biology, genetics, pharmacology, toxicology, forensic science, programmed cell death, aging, cancer and clinical features of mitochondrial diseases.