{"title":"Creating Deep Traps in Yttrium Aluminum Garnet for Long-Term Optical Storage and Afterglow-Intensity-Ratio-Based Temperature Sensing","authors":"Chuan Liao, Feng Liu, Hao Wu, Huajun Wu, Liangliang Zhang, Guo-hui Pan, Zhendong Hao, Xiao-jun Wang, Jiahua Zhang","doi":"10.1002/lpor.202300924","DOIUrl":null,"url":null,"abstract":"<p>Deep traps are needed for electron-trapping-based long-term optical storage due to its resistance to thermal erasure. Current electron trapping materials have the erasing temperatures hardly beyond 600 K, limiting its storage time. Herein, an electron trapping material containing deep traps is achieved by co-doping Tb and Eu in Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> via solid-state reaction in reducing atmosphere. After 254 nm UV charging, strong thermoluminescence of Tb<sup>3+</sup> with the glow curve peaking at 600, 693, and 765 K is observed. The comparative studies of the as-made and the air-annealed samples suggest that these new traps are related to the complex defects containing oxygen vacancy with adjacent Eu<sup>2+</sup> and the charging process is the photoionization of Tb<sup>3+</sup> with subsequent electron trapping. The 693 and 765 K thermoluminescence glow peaks in the charged sample show almost no decrease during 108 h storage in dark at room temperature. Images write-in and read-out via 808 nm laser stimulation are realized. Furthermore, the present phosphor also exhibits temperature-sensitive afterglow spectra in the range of 553–803 K with the sensing span of 250 K wider than other afterglow thermometers. These findings indicate the great application potentials of Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Tb,Eu phosphor in long-term optical storage and temperature sensing.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 7","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202300924","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep traps are needed for electron-trapping-based long-term optical storage due to its resistance to thermal erasure. Current electron trapping materials have the erasing temperatures hardly beyond 600 K, limiting its storage time. Herein, an electron trapping material containing deep traps is achieved by co-doping Tb and Eu in Y3Al5O12 via solid-state reaction in reducing atmosphere. After 254 nm UV charging, strong thermoluminescence of Tb3+ with the glow curve peaking at 600, 693, and 765 K is observed. The comparative studies of the as-made and the air-annealed samples suggest that these new traps are related to the complex defects containing oxygen vacancy with adjacent Eu2+ and the charging process is the photoionization of Tb3+ with subsequent electron trapping. The 693 and 765 K thermoluminescence glow peaks in the charged sample show almost no decrease during 108 h storage in dark at room temperature. Images write-in and read-out via 808 nm laser stimulation are realized. Furthermore, the present phosphor also exhibits temperature-sensitive afterglow spectra in the range of 553–803 K with the sensing span of 250 K wider than other afterglow thermometers. These findings indicate the great application potentials of Y3Al5O12:Tb,Eu phosphor in long-term optical storage and temperature sensing.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.