{"title":"Automatic classification of seizure and seizure-free EEG signals based on phase space reconstruction features","authors":"Shervin Skaria, Sreelatha Karyaveetil Savithriamma","doi":"10.1007/s10867-024-09654-6","DOIUrl":null,"url":null,"abstract":"<div><p>Epilepsy is a type of brain disorder triggered by an abrupt electrical imbalance of neuronal networks. An electroencephalogram (EEG) is a diagnostic tool to capture the underlying brain mechanisms and detect seizure onset in epileptic patients. To detect seizures, neurologists need to manually monitor EEG recordings for long periods, which is challenging and susceptible to errors depending on expertise and experience. Therefore, automatic identification of seizure and seizure-free EEG signals becomes essential. This study introduces a method based on the features extracted from the phase space reconstruction for classifying seizure and seizure-free EEG signals. The computed features are derived from the elliptical area and interquartile range of the Euclidean distance by varying percentage values of data points ranging from 50 to 100%. We consider two public datasets and evaluate these features in each EEG epoch that includes the healthy, interictal, preictal, and ictal stages of epileptic subjects, utilizing the K-nearest neighbor classifier for classification. Results show that the features have higher values during the seizure than the seizure-free EEG signals and healthy subjects. Furthermore, the proposed features can effectively discriminate seizure EEG signals from the seizure-free and normal subjects with 100% accuracy, sensitivity, and specificity in both datasets. Likewise, the classification between the preictal stage and seizure EEG signals attains 98% accuracy. Overall, the reconstructed phase space features significantly enhance the accuracy of detecting epileptic EEG signals compared with existing methods. This advancement holds great potential in assisting neurologists in swiftly and accurately diagnosing epileptic seizures from EEG signals.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-024-09654-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a type of brain disorder triggered by an abrupt electrical imbalance of neuronal networks. An electroencephalogram (EEG) is a diagnostic tool to capture the underlying brain mechanisms and detect seizure onset in epileptic patients. To detect seizures, neurologists need to manually monitor EEG recordings for long periods, which is challenging and susceptible to errors depending on expertise and experience. Therefore, automatic identification of seizure and seizure-free EEG signals becomes essential. This study introduces a method based on the features extracted from the phase space reconstruction for classifying seizure and seizure-free EEG signals. The computed features are derived from the elliptical area and interquartile range of the Euclidean distance by varying percentage values of data points ranging from 50 to 100%. We consider two public datasets and evaluate these features in each EEG epoch that includes the healthy, interictal, preictal, and ictal stages of epileptic subjects, utilizing the K-nearest neighbor classifier for classification. Results show that the features have higher values during the seizure than the seizure-free EEG signals and healthy subjects. Furthermore, the proposed features can effectively discriminate seizure EEG signals from the seizure-free and normal subjects with 100% accuracy, sensitivity, and specificity in both datasets. Likewise, the classification between the preictal stage and seizure EEG signals attains 98% accuracy. Overall, the reconstructed phase space features significantly enhance the accuracy of detecting epileptic EEG signals compared with existing methods. This advancement holds great potential in assisting neurologists in swiftly and accurately diagnosing epileptic seizures from EEG signals.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.