Hyung Jun Kim, Seong Min Kang, Seon Myeong Kim, Jin Ho Kim
{"title":"Meta-Model Based Blade Optimization Design Considering the Fluid Characteristics of Vehicle Energy Harvesting","authors":"Hyung Jun Kim, Seong Min Kang, Seon Myeong Kim, Jin Ho Kim","doi":"10.1007/s12239-024-00049-z","DOIUrl":null,"url":null,"abstract":"<p>The advancement of transportation machinery has played a crucial role in driving global economic and societal growth. However, this progress has also given rise to challenges, such as the depletion of chemical resources and the escalating impact of climate change. As a result, automobile companies are now prioritizing energy efficiency and transitioning towards eco-friendly vehicles. In response to this demand, various efforts have been made to harvest energy and improve the efficiency of eco-friendly vehicles, with energy-harvesting dampers emerging as a promising solution. This study focuses on the optimization of the shape and design of a rotary power generation system integrated within an energy harvesting system. The primary objective of the rotary power generation system is to convert mechanical motion into electrical energy, thereby enhancing the overall efficiency and sustainability of eco-friendly vehicles. By considering the specific characteristics of SAE 30 W working oil within the damper, the optimal blade shape and generator can be determined to maximize the power generation capabilities of the system.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"67 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00049-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of transportation machinery has played a crucial role in driving global economic and societal growth. However, this progress has also given rise to challenges, such as the depletion of chemical resources and the escalating impact of climate change. As a result, automobile companies are now prioritizing energy efficiency and transitioning towards eco-friendly vehicles. In response to this demand, various efforts have been made to harvest energy and improve the efficiency of eco-friendly vehicles, with energy-harvesting dampers emerging as a promising solution. This study focuses on the optimization of the shape and design of a rotary power generation system integrated within an energy harvesting system. The primary objective of the rotary power generation system is to convert mechanical motion into electrical energy, thereby enhancing the overall efficiency and sustainability of eco-friendly vehicles. By considering the specific characteristics of SAE 30 W working oil within the damper, the optimal blade shape and generator can be determined to maximize the power generation capabilities of the system.
运输机械的进步在推动全球经济和社会增长方面发挥了至关重要的作用。然而,这种进步也带来了挑战,如化学资源的枯竭和气候变化影响的不断加剧。因此,汽车公司现在将能源效率放在首位,并向环保型汽车转型。为了应对这一需求,人们在收集能量和提高环保型汽车的效率方面做出了各种努力,其中能量收集阻尼器成为一种前景广阔的解决方案。本研究的重点是优化集成在能量收集系统中的旋转发电系统的形状和设计。旋转发电系统的主要目的是将机械运动转化为电能,从而提高环保汽车的整体效率和可持续性。通过考虑阻尼器内 SAE 30 W 工作油的具体特性,可以确定最佳叶片形状和发电机,从而最大限度地提高系统的发电能力。
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.