Tian Li, Hong Zhou, Wei Ding, Jinjun Wang, Tiancheng Zhang
{"title":"Energy system for evaluation of modification methods on energy transfer efficiency and optimization of membranes","authors":"Tian Li, Hong Zhou, Wei Ding, Jinjun Wang, Tiancheng Zhang","doi":"10.1038/s41545-024-00310-z","DOIUrl":null,"url":null,"abstract":"Saving energy is crucial for utilizing membrane technology, but there is no energy parameter for understanding the relationships among membrane performance and energy. Here, φ is defined as the energy transfer efficiency of the membrane, and its numerical expression of membrane performance is poor (e.g., in the range of 10−23). The method of modifying membranes is a crucial determinant for developing membrane science, but researchers using current parameters to evaluate modification methods might lead to erroneous conclusions. Hence, the newly established system θ is used to analyze the influence of different modification methods on energy consumption, which not only establish the relationship between different modification methods but also provide the research routes for future optimization methods. The main conclusions are as follows: (1) The current modification methods influence on the energy transfer efficiency of the pristine membrane by about 0.4902–3.278 × 104 times; (2) Using scientific data certifies that the modified support layer of the membranes is a more effective method for reducing the energy consumption than the modified activity layer of the membranes; (3) The establishment of this system provides data support for analyzing the advantages and disadvantages of modification methods, and provides guidance for how to optimize the modification methods of membranes. Therefore, this study not only fills key knowledge gaps in membrane science, but also provides theoretical support for how to optimize membrane modification methods.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00310-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00310-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Saving energy is crucial for utilizing membrane technology, but there is no energy parameter for understanding the relationships among membrane performance and energy. Here, φ is defined as the energy transfer efficiency of the membrane, and its numerical expression of membrane performance is poor (e.g., in the range of 10−23). The method of modifying membranes is a crucial determinant for developing membrane science, but researchers using current parameters to evaluate modification methods might lead to erroneous conclusions. Hence, the newly established system θ is used to analyze the influence of different modification methods on energy consumption, which not only establish the relationship between different modification methods but also provide the research routes for future optimization methods. The main conclusions are as follows: (1) The current modification methods influence on the energy transfer efficiency of the pristine membrane by about 0.4902–3.278 × 104 times; (2) Using scientific data certifies that the modified support layer of the membranes is a more effective method for reducing the energy consumption than the modified activity layer of the membranes; (3) The establishment of this system provides data support for analyzing the advantages and disadvantages of modification methods, and provides guidance for how to optimize the modification methods of membranes. Therefore, this study not only fills key knowledge gaps in membrane science, but also provides theoretical support for how to optimize membrane modification methods.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.