Jacqueline H. T. Hoppenreijs, Lovisa Lind, R. Lutz Eckstein
{"title":"Effects of dispersal and geomorphology on riparian seed banks and vegetation in a boreal stream","authors":"Jacqueline H. T. Hoppenreijs, Lovisa Lind, R. Lutz Eckstein","doi":"10.1111/jvs.13240","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Question</h3>\n \n <p>Riparian vegetation and seed banks are the foundation of functional riparian zones, yet insight in the processes that explain their composition is limited. We tested three theories fundamental to dispersal and environmental filtering of riparian seed banks and vegetation. Combining these theories, we expected hydrochory to lead to increased species richness downstream in both soil seed bank and vegetation with accumulation restarting after a lake section, and geomorphological filtering to lead to higher similarity of seed bank and vegetation composition locally and within lakes, slow-flowing sections and rapids, respectively, than between them.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Svartån, a free-flowing river in central Sweden.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We surveyed riparian vegetation and conducted a germination experiment on riparian soil seed bank cores from lakes, slow-flowing sections and rapids. We combined these with trait data on seed dispersal syndromes, floating capacity of seeds and seed longevity. We analysed differences throughout the system with linear models and between process domains with Kruskal–Wallis tests and similarity in community composition with the Horn–Morisita similarity index.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our results indicated that species richness did not increase downstream and was relatively similar throughout lakes, slow-flowing sections and rapids for both riparian seed banks and vegetation. Seed floating capacity was similar throughout these river sections, too, and seed longevity was higher in seed banks than in vegetation.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Geomorphology and hydrochory were not as important drivers in this area for riparian seed bank and vegetation composition as expected. In the area and on the scale studied here, other local and regional environmental factors and dispersal syndromes are more likely to be determinants of riparian dynamics and composition. Continued studies of riparian seed banks can help improve our understanding of riparian composition and functioning in the future.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"35 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13240","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13240","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Question
Riparian vegetation and seed banks are the foundation of functional riparian zones, yet insight in the processes that explain their composition is limited. We tested three theories fundamental to dispersal and environmental filtering of riparian seed banks and vegetation. Combining these theories, we expected hydrochory to lead to increased species richness downstream in both soil seed bank and vegetation with accumulation restarting after a lake section, and geomorphological filtering to lead to higher similarity of seed bank and vegetation composition locally and within lakes, slow-flowing sections and rapids, respectively, than between them.
Location
Svartån, a free-flowing river in central Sweden.
Methods
We surveyed riparian vegetation and conducted a germination experiment on riparian soil seed bank cores from lakes, slow-flowing sections and rapids. We combined these with trait data on seed dispersal syndromes, floating capacity of seeds and seed longevity. We analysed differences throughout the system with linear models and between process domains with Kruskal–Wallis tests and similarity in community composition with the Horn–Morisita similarity index.
Results
Our results indicated that species richness did not increase downstream and was relatively similar throughout lakes, slow-flowing sections and rapids for both riparian seed banks and vegetation. Seed floating capacity was similar throughout these river sections, too, and seed longevity was higher in seed banks than in vegetation.
Conclusions
Geomorphology and hydrochory were not as important drivers in this area for riparian seed bank and vegetation composition as expected. In the area and on the scale studied here, other local and regional environmental factors and dispersal syndromes are more likely to be determinants of riparian dynamics and composition. Continued studies of riparian seed banks can help improve our understanding of riparian composition and functioning in the future.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.