Robert P. Davis, Levi M. Simmons, Stephanie L. Shaw, Greg G. Sass, Nicholas M. Sard, Daniel A. Isermann, Wesley A. Larson, Jared J. Homola
{"title":"Demographic patterns of walleye (Sander vitreus) reproductive success in a Wisconsin population","authors":"Robert P. Davis, Levi M. Simmons, Stephanie L. Shaw, Greg G. Sass, Nicholas M. Sard, Daniel A. Isermann, Wesley A. Larson, Jared J. Homola","doi":"10.1111/eva.13665","DOIUrl":null,"url":null,"abstract":"<p>Harvest in walleye <i>Sander vitreus</i> fisheries is size-selective and could influence phenotypic traits of spawners; however, contributions of individual spawners to recruitment are unknown. We used parentage analyses using single nucleotide polymorphisms to test whether parental traits were related to the probability of offspring survival in Escanaba Lake, Wisconsin. From 2017 to 2020, 1339 adults and 1138 juveniles were genotyped and 66% of the offspring were assigned to at least one parent. Logistic regression indicated the probability of reproductive success (survival of age-0 to first fall) was positively (but weakly) related to total length and growth rate in females, but not age. No traits analyzed were related to reproductive success for males. Our analysis identified the model with the predictors' growth rate and year for females and the models with year and age and year for males as the most likely models to explain variation in reproductive success. Our findings indicate that interannual variation (i.e., environmental conditions) likely plays a key role in determining the probability of reproductive success in this population and provide limited support that female age, length, and growth rate influence recruitment.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13665","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13665","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Harvest in walleye Sander vitreus fisheries is size-selective and could influence phenotypic traits of spawners; however, contributions of individual spawners to recruitment are unknown. We used parentage analyses using single nucleotide polymorphisms to test whether parental traits were related to the probability of offspring survival in Escanaba Lake, Wisconsin. From 2017 to 2020, 1339 adults and 1138 juveniles were genotyped and 66% of the offspring were assigned to at least one parent. Logistic regression indicated the probability of reproductive success (survival of age-0 to first fall) was positively (but weakly) related to total length and growth rate in females, but not age. No traits analyzed were related to reproductive success for males. Our analysis identified the model with the predictors' growth rate and year for females and the models with year and age and year for males as the most likely models to explain variation in reproductive success. Our findings indicate that interannual variation (i.e., environmental conditions) likely plays a key role in determining the probability of reproductive success in this population and provide limited support that female age, length, and growth rate influence recruitment.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.