Clinical Utility of Machine Learning Methods Using Regression Models for Diagnosing Eosinophilic Chronic Rhinosinusitis.

IF 1.8 Q2 OTORHINOLARYNGOLOGY
OTO Open Pub Date : 2024-03-10 eCollection Date: 2024-01-01 DOI:10.1002/oto2.122
Hiroatsu Hatsukawa, Masaaki Ishikawa
{"title":"Clinical Utility of Machine Learning Methods Using Regression Models for Diagnosing Eosinophilic Chronic Rhinosinusitis.","authors":"Hiroatsu Hatsukawa, Masaaki Ishikawa","doi":"10.1002/oto2.122","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Machine learning methods using regression models can predict actual values of histological eosinophil count from blood eosinophil levels. Therefore, these methods might be useful for diagnosing eosinophilic chronic rhinosinusitis, but their utility still remains unclear. We compared 2 statistical approaches, and investigated the utility of machine learning methods for diagnosing eosinophilic chronic rhinosinusitis.</p><p><strong>Study design: </strong>Retrospective study.</p><p><strong>Setting: </strong>Medical center.</p><p><strong>Methods: </strong>Data, including eosinophilic levels, obtained from blood and sinonasal samples of 264 patients with chronic rhinosinusitis (257 with and 57 without nasal polyps) were analyzed. We determined factors affecting histopathological eosinophil count in regression models. We also investigated optimal cutoff values for blood eosinophil percentages/absolute eosinophil counts (AECs) through receiver operating characteristic curves and machine-learning methods based on regression models. A histopathological eosinophil count ≥10/high-power field was defined as eosinophilic chronic rhinosinusitis.</p><p><strong>Results: </strong>Blood eosinophil levels, nasal polyp presence, and comorbid asthma were factors affecting histopathological eosinophil count. Cutoffs between the 2 statistical approaches differed in the group with nasal polyps, but not in one without nasal polyps. Machine-learning methods identified blood eosinophil percentages ≥1% or AEC ≥100/μL as cut-offs for eosinophilic chronic rhinosinusitis with nasal polyps, while ≥6% or ≥400/μL for one without nasal polyps.</p><p><strong>Conclusion: </strong>Cut-offs of blood eosinophil levels obtained by machine-learning methods might be useful when suspecting eosinophilic chronic rhinosinusitis prior to biopsy because of their ability to adjust covariates, dealing with overfitting, and predicting actual values of histological eosinophil count.</p>","PeriodicalId":19697,"journal":{"name":"OTO Open","volume":"8 1","pages":"e122"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OTO Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oto2.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Machine learning methods using regression models can predict actual values of histological eosinophil count from blood eosinophil levels. Therefore, these methods might be useful for diagnosing eosinophilic chronic rhinosinusitis, but their utility still remains unclear. We compared 2 statistical approaches, and investigated the utility of machine learning methods for diagnosing eosinophilic chronic rhinosinusitis.

Study design: Retrospective study.

Setting: Medical center.

Methods: Data, including eosinophilic levels, obtained from blood and sinonasal samples of 264 patients with chronic rhinosinusitis (257 with and 57 without nasal polyps) were analyzed. We determined factors affecting histopathological eosinophil count in regression models. We also investigated optimal cutoff values for blood eosinophil percentages/absolute eosinophil counts (AECs) through receiver operating characteristic curves and machine-learning methods based on regression models. A histopathological eosinophil count ≥10/high-power field was defined as eosinophilic chronic rhinosinusitis.

Results: Blood eosinophil levels, nasal polyp presence, and comorbid asthma were factors affecting histopathological eosinophil count. Cutoffs between the 2 statistical approaches differed in the group with nasal polyps, but not in one without nasal polyps. Machine-learning methods identified blood eosinophil percentages ≥1% or AEC ≥100/μL as cut-offs for eosinophilic chronic rhinosinusitis with nasal polyps, while ≥6% or ≥400/μL for one without nasal polyps.

Conclusion: Cut-offs of blood eosinophil levels obtained by machine-learning methods might be useful when suspecting eosinophilic chronic rhinosinusitis prior to biopsy because of their ability to adjust covariates, dealing with overfitting, and predicting actual values of histological eosinophil count.

使用回归模型诊断嗜酸性粒细胞慢性鼻炎的机器学习方法的临床实用性。
目的:使用回归模型的机器学习方法可以根据血液中的嗜酸性粒细胞水平预测组织学嗜酸性粒细胞计数的实际值。因此,这些方法可能有助于诊断嗜酸性粒细胞慢性鼻炎,但其效用仍不明确。我们比较了两种统计方法,并研究了机器学习方法在诊断嗜酸性粒细胞性慢性鼻炎方面的实用性:研究设计:回顾性研究:研究设计:回顾性研究:分析了从 264 名慢性鼻炎患者(257 名有鼻息肉,57 名无鼻息肉)的血液和鼻窦样本中获得的数据,包括嗜酸性粒细胞水平。我们在回归模型中确定了影响组织病理学嗜酸性粒细胞计数的因素。我们还通过接收者操作特征曲线和基于回归模型的机器学习方法研究了血液嗜酸性粒细胞百分比/绝对嗜酸性粒细胞计数(AECs)的最佳临界值。组织病理学嗜酸性粒细胞计数≥10/高倍视野被定义为嗜酸性粒细胞慢性鼻炎:结果:血液中的嗜酸性粒细胞水平、鼻息肉的存在和合并哮喘是影响组织病理学嗜酸性粒细胞计数的因素。在有鼻息肉的组别中,两种统计方法的临界值不同,而在无鼻息肉的组别中则没有差异。机器学习方法确定血液中嗜酸性粒细胞百分比≥1%或AEC≥100/μL为有鼻息肉的嗜酸性粒细胞慢性鼻窦炎的临界值,而≥6%或≥400/μL为无鼻息肉的慢性鼻窦炎的临界值:通过机器学习方法获得的血液嗜酸性粒细胞水平临界值在活检前怀疑嗜酸性粒细胞性慢性鼻炎时可能很有用,因为这些临界值能够调整协变量、处理过拟合以及预测组织学嗜酸性粒细胞计数的实际值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
OTO Open
OTO Open Medicine-Surgery
CiteScore
2.70
自引率
0.00%
发文量
115
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信