Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life.

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Insect Science Pub Date : 2024-12-01 Epub Date: 2024-03-10 DOI:10.1111/1744-7917.13339
Perry G Beasley-Hall, Yukihiro Kinjo, Harley A Rose, James Walker, Charles S P Foster, Toby G L Kovacs, Thomas Bourguignon, Simon Y W Ho, Nathan Lo
{"title":"Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life.","authors":"Perry G Beasley-Hall, Yukihiro Kinjo, Harley A Rose, James Walker, Charles S P Foster, Toby G L Kovacs, Thomas Bourguignon, Simon Y W Ho, Nathan Lo","doi":"10.1111/1744-7917.13339","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1810-1821"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13339","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.

Abstract Image

在黑暗中缩小:平行内共生体基因组侵蚀与宿主反复过渡到地下生活有关。
微生物共生对动物的进化有着深远的影响。相反,宿主生物学特性的变化也可能影响共生体自身的进化轨迹。Blattabacterium cuenoti 几乎存在于所有蟑螂物种中,它能使宿主以营养不良的食物为生。为了研究宿主生物学是否在基因组水平上对布氏菌产生了影响,我们对澳大利亚土壤蟑螂(蜚蠊科:Panesthiinae)的 25 个基因组进行了测序和分析。我们发现,在澳大利亚土栖蟑螂特有的蜚蠊菌株中,至少发生了三次独立的基因组侵蚀。这些萎缩涉及氨基酸生物合成和氮循环基因的反复失活,而氨基酸生物合成和氮循环正是布氏菌在宿主-共生体关系中的核心作用。这些侵蚀中最严重的侵蚀发生在被认为相对于其他品系最早向地下过渡的宿主身上,这进一步表明了布氏囊杆菌基因缺失与宿主穴居行为之间的联系。由于担子菌在某些宿主种系中无法发挥其核心功能,这些发现表明土壤匍匐蟑螂必须从新的来源获取这些营养物质。据我们所知,我们的研究是宿主的平行适应导致其互利共生体的平行适应的首例研究之一,进一步强调了这两个伙伴之间的亲密关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信