{"title":"Research on duck egg recognition algorithm based on improved YOLOv4.","authors":"D Jie, J Wang, H Lv, H Wang","doi":"10.1080/00071668.2024.2308282","DOIUrl":null,"url":null,"abstract":"<p><p>1. The following study addressed the problem of small duck eggs as challenging to detect and identify for pick up in complex free-range duck farm environments. It introduces improvements to the YOLOv4 convolutional neural network target detection algorithm, based on the working conditions of egg-picking robots.2. Specifically, one scale of anchor boxes was removed from the prediction network, and a duck egg labelling dataset was established to make the improved algorithm YOLOv4-ours better match the working state of egg-picking robots and enhance detection performance.3. Through multiple comparative experiments, the YOLOv4-ours object detection algorithm exhibited superior overall performance, achieving a precision of 98.85%, recall of 96.67%, and an average precision of 98.60% and F1 score increased to 97%. Compared to the original YOLOv4 model, these improvements represented increases of 1.89%, 3.41%, 1.32%, and 1.04%, respectively. Furthermore, detection time was reduced from 0.26 seconds per image to 0.20 seconds.4. The enhanced model accurately detected duck eggs in free-range duck housing, effectively meeting the real-time egg identification and picking requirements.</p>","PeriodicalId":9322,"journal":{"name":"British Poultry Science","volume":" ","pages":"223-232"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00071668.2024.2308282","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
1. The following study addressed the problem of small duck eggs as challenging to detect and identify for pick up in complex free-range duck farm environments. It introduces improvements to the YOLOv4 convolutional neural network target detection algorithm, based on the working conditions of egg-picking robots.2. Specifically, one scale of anchor boxes was removed from the prediction network, and a duck egg labelling dataset was established to make the improved algorithm YOLOv4-ours better match the working state of egg-picking robots and enhance detection performance.3. Through multiple comparative experiments, the YOLOv4-ours object detection algorithm exhibited superior overall performance, achieving a precision of 98.85%, recall of 96.67%, and an average precision of 98.60% and F1 score increased to 97%. Compared to the original YOLOv4 model, these improvements represented increases of 1.89%, 3.41%, 1.32%, and 1.04%, respectively. Furthermore, detection time was reduced from 0.26 seconds per image to 0.20 seconds.4. The enhanced model accurately detected duck eggs in free-range duck housing, effectively meeting the real-time egg identification and picking requirements.
期刊介绍:
From its first volume in 1960, British Poultry Science has been a leading international journal for poultry scientists and advisers to the poultry industry throughout the world. Over 60% of the independently refereed papers published originate outside the UK. Most typically they report the results of biological studies with an experimental approach which either make an original contribution to fundamental science or are of obvious application to the industry. Subjects which are covered include: anatomy, embryology, biochemistry, biophysics, physiology, reproduction and genetics, behaviour, microbiology, endocrinology, nutrition, environmental science, food science, feeding stuffs and feeding, management and housing welfare, breeding, hatching, poultry meat and egg yields and quality.Papers that adopt a modelling approach or describe the scientific background to new equipment or apparatus directly relevant to the industry are also published. The journal also features rapid publication of Short Communications. Summaries of papers presented at the Spring Meeting of the UK Branch of the WPSA are published in British Poultry Abstracts .