{"title":"The Effect of Soil-Structure Interaction (SSI) on Structural Stability and Sustainability of RC Structures","authors":"Ragi Krishnan, Vidhyalakshmi Sivakumar","doi":"10.59440/ceer/184254","DOIUrl":null,"url":null,"abstract":"The issue of SSI involves how the ground or soil reacts to a building built on top of it. Both the character of the structure and the nature of the soil have an impact on the stresses that exist between them, which in turn affects how the structure and soil beneath it move. The issue is crucial, particularly in earthquake regions. The interaction between soil and structure is an extremely intriguing factor in increasing or reducing structural damage or movement. Structures sitting on deformable soil as opposed to strong soil will experience an increase in static settlement and a decrease in seismic harm. The engineer must take into account that the soil liquefaction problem occurs for soft ground in seismic areas. A reinforced concrete wall-frame dual framework's dynamic reaction to SSI has not been sufficiently studied and is infrequently taken into consideration in engineering practice. The structures’ seismic performance when SSI effects are taken into account is still unknown, and there are still some misconceptions about the SSI idea, especially regarding RC wall-frame dual systems. The simulation study of the soil beneath the foundations significantly impacts the framework's frequency response and dynamic properties. Therefore, the overall significance of SSI in the structural aspect and sustainability aspects will be reviewed in this research.","PeriodicalId":503238,"journal":{"name":"Civil and Environmental Engineering Reports","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59440/ceer/184254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The issue of SSI involves how the ground or soil reacts to a building built on top of it. Both the character of the structure and the nature of the soil have an impact on the stresses that exist between them, which in turn affects how the structure and soil beneath it move. The issue is crucial, particularly in earthquake regions. The interaction between soil and structure is an extremely intriguing factor in increasing or reducing structural damage or movement. Structures sitting on deformable soil as opposed to strong soil will experience an increase in static settlement and a decrease in seismic harm. The engineer must take into account that the soil liquefaction problem occurs for soft ground in seismic areas. A reinforced concrete wall-frame dual framework's dynamic reaction to SSI has not been sufficiently studied and is infrequently taken into consideration in engineering practice. The structures’ seismic performance when SSI effects are taken into account is still unknown, and there are still some misconceptions about the SSI idea, especially regarding RC wall-frame dual systems. The simulation study of the soil beneath the foundations significantly impacts the framework's frequency response and dynamic properties. Therefore, the overall significance of SSI in the structural aspect and sustainability aspects will be reviewed in this research.