Phuoc-Bao-Duy Nguyen, T. Nguyen, Thi-Thuy-Dung Nguyen
{"title":"Effect of Infrared Drying on the Drying Kinetics and the Quality of Mango (Mangifera indica) Powder","authors":"Phuoc-Bao-Duy Nguyen, T. Nguyen, Thi-Thuy-Dung Nguyen","doi":"10.31883/pjfns/182962","DOIUrl":null,"url":null,"abstract":"Mango powder is a nutrient-dense substance that can be used directly or as a supplement in food items. However, due to the high sugar content, the removal of moisture from mango was difficult. This study investigated an infrared drying technique for removing moisture from mango pulp to produce powder products. The experiment was designed in a three-factor full factorial design with the following variables: drying temperature (70, 75, and 80°C), maltodextrin content (0, 6, and 9 g/100 g pulp), and total soluble solid content (11 and 16°Brix). The findings indicated that the Weibull model was the most appropriate for describing the moisture removal of mango pulp during infrared drying. Higher temperature and maltodextrin content, along with reduced total soluble solid content, resulted in improved quality of the mango powder. Furthermore, the optimal drying conditions for mango powder were found as 11°Brix, 80°C, and 9% maltodextrin content, which could ensure the highest retention of total phenolics (59.874%), retention of reducing sugars (71.044%), total acidity (10.141%), and retention of DPPH radical scavenging activity (65.051%). To fully benefit from the rewards of infrared drying, it is essential to establish suitable pretreatment conditions or use additives to preserve component quality.","PeriodicalId":20332,"journal":{"name":"Polish Journal of Food and Nutrition Sciences","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Food and Nutrition Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31883/pjfns/182962","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mango powder is a nutrient-dense substance that can be used directly or as a supplement in food items. However, due to the high sugar content, the removal of moisture from mango was difficult. This study investigated an infrared drying technique for removing moisture from mango pulp to produce powder products. The experiment was designed in a three-factor full factorial design with the following variables: drying temperature (70, 75, and 80°C), maltodextrin content (0, 6, and 9 g/100 g pulp), and total soluble solid content (11 and 16°Brix). The findings indicated that the Weibull model was the most appropriate for describing the moisture removal of mango pulp during infrared drying. Higher temperature and maltodextrin content, along with reduced total soluble solid content, resulted in improved quality of the mango powder. Furthermore, the optimal drying conditions for mango powder were found as 11°Brix, 80°C, and 9% maltodextrin content, which could ensure the highest retention of total phenolics (59.874%), retention of reducing sugars (71.044%), total acidity (10.141%), and retention of DPPH radical scavenging activity (65.051%). To fully benefit from the rewards of infrared drying, it is essential to establish suitable pretreatment conditions or use additives to preserve component quality.
期刊介绍:
The Polish Journal of Food and Nutrition Sciences publishes original, basic and applied papers, reviews and short communications on fundamental and applied food research in the following Sections:
-Food Technology:
Innovative technology of food development including biotechnological and microbiological aspects
Effects of processing on food composition and nutritional value
-Food Chemistry:
Bioactive constituents of foods
Chemistry relating to major and minor components of food
Analytical methods
-Food Quality and Functionality:
Sensory methodologies
Functional properties of food
Food physics
Quality, storage and safety of food
-Nutritional Research Section:
Nutritional studies relating to major and minor components of food (excluding works related to questionnaire
surveys)
-“News” section:
Announcements of congresses
Miscellanea