Microeukaryotic plankton community dynamics under ecological water replenishment: Insights from eDNA metabarcoding

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Shuping Wang , Songsong Gu , Yaqun Zhang , Ye Deng , Wenhui Qiu , Qianhang Sun , Tianxu Zhang , Pengyuan Wang , Zhenguang Yan
{"title":"Microeukaryotic plankton community dynamics under ecological water replenishment: Insights from eDNA metabarcoding","authors":"Shuping Wang ,&nbsp;Songsong Gu ,&nbsp;Yaqun Zhang ,&nbsp;Ye Deng ,&nbsp;Wenhui Qiu ,&nbsp;Qianhang Sun ,&nbsp;Tianxu Zhang ,&nbsp;Pengyuan Wang ,&nbsp;Zhenguang Yan","doi":"10.1016/j.ese.2024.100409","DOIUrl":null,"url":null,"abstract":"<div><p>Ecological water replenishment (EWR) is an important strategy for river restoration globally, but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge. Here, we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA (eDNA) metabarcoding. The three ecosystems include a long-term cut-off river, a short-term connected river after EWR, and long-term connected rivers. We analyzed community stability by investigating species composition, stochastic and deterministic dynamics interplay, and ecological network robustness. We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton, altered their community dynamics, and lessened the variation within the community. Moreover, EWR disrupted the deterministic patterns of community organization, favoring dispersal constraints, and aligning with trends observed in naturally connected rivers. The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance, whereas, in permanently connected rivers, both forces concurrently influenced community assembly. The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems. This shift markedly bolstered the resilience of the ecological network. The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions, which could be critical in assessing the effects of river restoration projects throughout their life cycle.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000231/pdfft?md5=fff7809fa0be3125e3d7d66f9e17139d&pid=1-s2.0-S2666498424000231-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000231","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ecological water replenishment (EWR) is an important strategy for river restoration globally, but timely evaluation of its ecological effects at a large spatiotemporal scale to further adjust the EWR schemes is of great challenge. Here, we examine the impact of EWR on microeukaryotic plankton communities in three distinct river ecosystems through environmental DNA (eDNA) metabarcoding. The three ecosystems include a long-term cut-off river, a short-term connected river after EWR, and long-term connected rivers. We analyzed community stability by investigating species composition, stochastic and deterministic dynamics interplay, and ecological network robustness. We found that EWR markedly reduced the diversity and complexity of microeukaryotic plankton, altered their community dynamics, and lessened the variation within the community. Moreover, EWR disrupted the deterministic patterns of community organization, favoring dispersal constraints, and aligning with trends observed in naturally connected rivers. The shift from an isolated to a temporarily connected river appeared to transition community structuring mechanisms from deterministic to stochastic dominance, whereas, in permanently connected rivers, both forces concurrently influenced community assembly. The ecological network in temporarily connected rivers post-EWR demonstrated significantly greater stability and intricacy compared to other river systems. This shift markedly bolstered the resilience of the ecological network. The eDNA metabarcoding insights offer a novel understanding of ecosystem resilience under EWR interventions, which could be critical in assessing the effects of river restoration projects throughout their life cycle.

Abstract Image

生态补水下的微真核浮游生物群落动力学:eDNA 代谢编码的启示
生态补水(EWR)是全球河流修复的一项重要战略,但在大时空尺度上及时评估其生态效应以进一步调整生态补水方案是一项巨大的挑战。在这里,我们通过环境 DNA(eDNA)元条码研究了 EWR 对三个不同河流生态系统中微真核浮游生物群落的影响。这三个生态系统包括长期断流的河流、EWR 后短期连通的河流以及长期连通的河流。我们通过研究物种组成、随机和确定性动力学相互作用以及生态网络稳健性来分析群落稳定性。我们发现,EWR 明显降低了微真核细胞浮游生物的多样性和复杂性,改变了它们的群落动力学,减少了群落内部的变异。此外,EWR 破坏了群落组织的确定性模式,有利于分散限制,与在自然连接的河流中观察到的趋势一致。从孤立的河流到暂时连通的河流,群落结构机制似乎从确定性主导转变为随机性主导,而在永久连通的河流中,两种力量同时影响着群落的组合。与其他河流系统相比,EWR 后暂时连通的河流的生态网络显示出更高的稳定性和复杂性。这种转变明显增强了生态网络的恢复能力。eDNA 代谢编码的研究成果为人们提供了一种对 EWR 干预下生态系统恢复能力的新认识,这对于评估河流修复项目在其整个生命周期内的效果至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信