Shimin Wang, Xuhu He, Xiaoyu Peng, Ya Wang, Zhengxin Li, Zihan Song
{"title":"Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels","authors":"Shimin Wang, Xuhu He, Xiaoyu Peng, Ya Wang, Zhengxin Li, Zihan Song","doi":"10.1016/j.undsp.2023.11.015","DOIUrl":null,"url":null,"abstract":"<div><p>In large-diameter shield tunnels, applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining. The secondary lining thickness is a key parameter in the design of a double lining structure, which is worth being explored. Based on an actual large-diameter shield tunnel, loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure. The test results show that within the range of secondary lining thicknesses discussed, the load-bearing limit of the double-layer lining increases with growing secondary lining thickness. As a passive support, the secondary lining acts as an auxiliary load-bearing structure by contacting the segment. And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining, with both the contact pressure level and the contact area between the two varying. For double-layer lining structures in large-diameter shield tunnels, it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment, as this allows them to have a coordinated deformation and a good joint load-bearing effect.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 130-150"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000217/pdfft?md5=4cf80277d56a99e0abf36565b1737038&pid=1-s2.0-S2467967424000217-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000217","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In large-diameter shield tunnels, applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining. The secondary lining thickness is a key parameter in the design of a double lining structure, which is worth being explored. Based on an actual large-diameter shield tunnel, loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure. The test results show that within the range of secondary lining thicknesses discussed, the load-bearing limit of the double-layer lining increases with growing secondary lining thickness. As a passive support, the secondary lining acts as an auxiliary load-bearing structure by contacting the segment. And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining, with both the contact pressure level and the contact area between the two varying. For double-layer lining structures in large-diameter shield tunnels, it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment, as this allows them to have a coordinated deformation and a good joint load-bearing effect.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.