Comparative study of different training algorithms in backpropagation neural networks for generalized biomass higher heating value prediction

Usman Alhaji Dodo , Mustapha Alhaji Dodo , Asia'u Talatu Belgore , Munir Aminu Husein , Evans Chinemezu Ashigwuike , Ahmed Saba Mohammed , Sani Isah Abba
{"title":"Comparative study of different training algorithms in backpropagation neural networks for generalized biomass higher heating value prediction","authors":"Usman Alhaji Dodo ,&nbsp;Mustapha Alhaji Dodo ,&nbsp;Asia'u Talatu Belgore ,&nbsp;Munir Aminu Husein ,&nbsp;Evans Chinemezu Ashigwuike ,&nbsp;Ahmed Saba Mohammed ,&nbsp;Sani Isah Abba","doi":"10.1016/j.gerr.2024.100060","DOIUrl":null,"url":null,"abstract":"<div><p>When selecting biomass feedstock for sustainable heat and electricity generation, higher heating value (HHV) is an important consideration. Meanwhile, the laboratory procedures of using an adiabatic oxygen bomb calorimeter to determine the HHV are strenuous, costly, and time-consuming. As a result, researchers have turned to artificial intelligence techniques such as artificial neural networks (ANN) to predict HHV using data from proximate analysis. Notwithstanding, this approach has been hampered by different case-specific techniques and methodologies given the heterogeneous nature of biomass materials and intricate ANN structures. This study, therefore, examined and compared the efficacy of six training algorithms comprising thirteen distinct training functions of feedforward backpropagation neural networks to predict the HHV of a variety of biomass materials as a function of the proximate analysis. In creating the networks, the neurons of the hidden layer were iterated from 1 to 20 leading to 260 investigated scenarios. Compared to other training algorithms, the Bayesian Regularization and Levenberg-Marquardt with 15 and 12 hidden neurons respectively, demonstrated superior prediction performances based on the Nash-Sutcliff's efficiencies of 0.9044 and 0.8877, and mean squared errors of 0.002271 and 0.00267. It is envisaged that this study will create an insightful paradigm for a rapid selection of best-performing ANN algorithms for biomass HHV prediction.</p></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 1","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949720524000146/pdfft?md5=bd519393feabdf1837451ee474baebb7&pid=1-s2.0-S2949720524000146-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When selecting biomass feedstock for sustainable heat and electricity generation, higher heating value (HHV) is an important consideration. Meanwhile, the laboratory procedures of using an adiabatic oxygen bomb calorimeter to determine the HHV are strenuous, costly, and time-consuming. As a result, researchers have turned to artificial intelligence techniques such as artificial neural networks (ANN) to predict HHV using data from proximate analysis. Notwithstanding, this approach has been hampered by different case-specific techniques and methodologies given the heterogeneous nature of biomass materials and intricate ANN structures. This study, therefore, examined and compared the efficacy of six training algorithms comprising thirteen distinct training functions of feedforward backpropagation neural networks to predict the HHV of a variety of biomass materials as a function of the proximate analysis. In creating the networks, the neurons of the hidden layer were iterated from 1 to 20 leading to 260 investigated scenarios. Compared to other training algorithms, the Bayesian Regularization and Levenberg-Marquardt with 15 and 12 hidden neurons respectively, demonstrated superior prediction performances based on the Nash-Sutcliff's efficiencies of 0.9044 and 0.8877, and mean squared errors of 0.002271 and 0.00267. It is envisaged that this study will create an insightful paradigm for a rapid selection of best-performing ANN algorithms for biomass HHV prediction.

用于广义生物质高热值预测的反向传播神经网络中不同训练算法的比较研究
在为可持续供热和发电选择生物质原料时,较高的热值(HHV)是一个重要的考虑因素。同时,使用绝热氧弹热量计测定 HHV 的实验室程序费力、昂贵且耗时。因此,研究人员转而采用人工智能技术,如人工神经网络(ANN),利用近似分析数据预测 HHV。尽管如此,由于生物质材料的异质性和复杂的人工神经网络结构,这种方法一直受到不同具体情况的技术和方法的阻碍。因此,本研究考察并比较了六种训练算法(包括 13 种不同的前馈反向传播神经网络训练函数)的功效,以预测各种生物质材料的 HHV(近似分析的函数)。在创建网络时,隐藏层的神经元从 1 个迭代到 20 个,最终得出 260 个调查方案。与其他训练算法相比,贝叶斯正则化和 Levenberg-Marquardt 算法(分别有 15 和 12 个隐藏神经元)的纳什-萨特克利夫效率分别为 0.9044 和 0.8877,均方误差分别为 0.002271 和 0.00267,显示出卓越的预测性能。预计这项研究将为生物质 HHV 预测快速选择性能最佳的 ANN 算法提供一个具有洞察力的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信