F. Saxer , D. Demanse , A. Brett , D. Laurent , L. Mindeholm , P.G. Conaghan , M. Schieker
{"title":"Prognostic value of B-score for predicting joint replacement in the context of osteoarthritis phenotypes: Data from the osteoarthritis initiative","authors":"F. Saxer , D. Demanse , A. Brett , D. Laurent , L. Mindeholm , P.G. Conaghan , M. Schieker","doi":"10.1016/j.ocarto.2024.100458","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Developing new therapies for knee osteoarthritis (KOA) requires improved prediction of disease progression. This study evaluated the prognostic value of clinical clusters and machine-learning derived quantitative 3D bone shape B-score for predicting total and partial knee replacement (KR).</p></div><div><h3>Design</h3><p>This retrospective study used longitudinal data from the Osteoarthritis Initiative. A previous study used patients' clinical profiles to delineate phenotypic clusters. For these clusters, the distribution of B-scores was assessed (employing Tukey's method). The value of both cluster allocation and B-score for KR-prediction was then evaluated using multivariable Cox regression models and Kaplan-Meier curves for time-to-event analyses. The impact of using B-score vs. cluster was evaluated using a likelihood ratio test for the multivariable Cox model; global performances were assessed by concordance statistics (Harrell's C-index) and time dependent receiver operating characteristic (ROC) curves.</p></div><div><h3>Results</h3><p>B-score differed significantly for the individual clinical clusters (p < 0.001). Overall, 9.4% of participants had a KR over 9 years, with a shorter time to event in clusters with high B-score at baseline. Those clusters were characterized clinically by a high rate of comorbidities and potential signs of inflammation. Both phenotype and B-score independently predicted KR, with better prediction if combined (P < 0.001). B-score added predictive value in groups with less pain and radiographic severity but limited physical activity.</p></div><div><h3>Conclusions</h3><p>B-scores correlated with phenotypes based on clinical patient profiles. B-score and phenotype independently predicted KR surgery, with higher predictive value if combined. This can be used for patient stratification in drug development and potentially risk prediction in clinical practice.</p></div>","PeriodicalId":74377,"journal":{"name":"Osteoarthritis and cartilage open","volume":"6 2","pages":"Article 100458"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665913124000256/pdfft?md5=3700ef530ef0c631960569aeebbb827e&pid=1-s2.0-S2665913124000256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis and cartilage open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665913124000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Developing new therapies for knee osteoarthritis (KOA) requires improved prediction of disease progression. This study evaluated the prognostic value of clinical clusters and machine-learning derived quantitative 3D bone shape B-score for predicting total and partial knee replacement (KR).
Design
This retrospective study used longitudinal data from the Osteoarthritis Initiative. A previous study used patients' clinical profiles to delineate phenotypic clusters. For these clusters, the distribution of B-scores was assessed (employing Tukey's method). The value of both cluster allocation and B-score for KR-prediction was then evaluated using multivariable Cox regression models and Kaplan-Meier curves for time-to-event analyses. The impact of using B-score vs. cluster was evaluated using a likelihood ratio test for the multivariable Cox model; global performances were assessed by concordance statistics (Harrell's C-index) and time dependent receiver operating characteristic (ROC) curves.
Results
B-score differed significantly for the individual clinical clusters (p < 0.001). Overall, 9.4% of participants had a KR over 9 years, with a shorter time to event in clusters with high B-score at baseline. Those clusters were characterized clinically by a high rate of comorbidities and potential signs of inflammation. Both phenotype and B-score independently predicted KR, with better prediction if combined (P < 0.001). B-score added predictive value in groups with less pain and radiographic severity but limited physical activity.
Conclusions
B-scores correlated with phenotypes based on clinical patient profiles. B-score and phenotype independently predicted KR surgery, with higher predictive value if combined. This can be used for patient stratification in drug development and potentially risk prediction in clinical practice.