{"title":"Enhancement of Field Oriented Control for Permanent Magnetic Synchronous Motor using Ant Colony Optimization","authors":"Meriem Megrini, Ahmed Gaga, Y. Mehdaoui","doi":"10.37394/232016.2024.19.3","DOIUrl":null,"url":null,"abstract":"Because of its frequent use in diverse systems, the PMSM drive must be controlled. Field-oriented control (FOC) based PMSM drive is modeled in the present work to optimize the torque and speed performance of the PMSM. The FOC is based on a dissociated speed and flux control approach, which controls the speed and flux of the PMSM independently. The standard Proportional Integrator Derivative (PID) controller regulates the speed in FOC, which is noted for its increased resilience in linear systems, however in nonlinear ones, the PID controller responds poorly to changes in the system’s variables. In this case, the best solutions are frequently based on optimization techniques that produce the controller’s gains in every period. Optimizing the PID’s behavior in response to the system’s nonlinear behavior. The novel proposed strategy for enhancing the gains of the PID controller by employing a cost function such as Integral Time Absolute Error (ITAE) is based on PID speed regulation and is optimized using the Ant Colony Optimization algorithm (ACO) for FOC. To confirm the strategy’s aims, the suggested method is implemented on Matlab/Simulink. The simulation results demonstrated the efficiency of the intelligent ACO-FOC control, which delivers good performance in terms of stability, rapidity, and torque fluctuations.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"20 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2024.19.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Because of its frequent use in diverse systems, the PMSM drive must be controlled. Field-oriented control (FOC) based PMSM drive is modeled in the present work to optimize the torque and speed performance of the PMSM. The FOC is based on a dissociated speed and flux control approach, which controls the speed and flux of the PMSM independently. The standard Proportional Integrator Derivative (PID) controller regulates the speed in FOC, which is noted for its increased resilience in linear systems, however in nonlinear ones, the PID controller responds poorly to changes in the system’s variables. In this case, the best solutions are frequently based on optimization techniques that produce the controller’s gains in every period. Optimizing the PID’s behavior in response to the system’s nonlinear behavior. The novel proposed strategy for enhancing the gains of the PID controller by employing a cost function such as Integral Time Absolute Error (ITAE) is based on PID speed regulation and is optimized using the Ant Colony Optimization algorithm (ACO) for FOC. To confirm the strategy’s aims, the suggested method is implemented on Matlab/Simulink. The simulation results demonstrated the efficiency of the intelligent ACO-FOC control, which delivers good performance in terms of stability, rapidity, and torque fluctuations.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.