Optimization of two-dimensional solid-state electrolyte–anode interface by integrating zinc into composite anode with dual-conductive phases

Yijun Zhong, Chencheng Cao, Leqi Zhao, Moses Oludayo Tadé, Zongping Shao
{"title":"Optimization of two-dimensional solid-state electrolyte–anode interface by integrating zinc into composite anode with dual-conductive phases","authors":"Yijun Zhong,&nbsp;Chencheng Cao,&nbsp;Leqi Zhao,&nbsp;Moses Oludayo Tadé,&nbsp;Zongping Shao","doi":"10.1016/j.greenca.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Solid-state electrolytes (SSEs) are a solution to safety issues related to flammable organic electrolytes for Li batteries. Insufficient contact between the anode and SSE results in high interface resistance, thus causing the batteries to exhibit high charging and discharging overpotentials. Recently, we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode. The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases. Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode (Li-FeZnNC). The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC (without Zn modification) and Li-symmetric cells. The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h. Full batteries with a Li-FeZnNC composite anode, garnet-type SSE, and LiFePO<sub>4</sub> cathode show low charging and discharging overpotentials, a capacity of 152 mAh g<sup>−1</sup>, and high stability for 200 cycles.</p></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"2 1","pages":"Pages 94-100"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950155524000156/pdfft?md5=34246390f3ba5b7f5d5f0b1fc12b9caf&pid=1-s2.0-S2950155524000156-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950155524000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes (SSEs) are a solution to safety issues related to flammable organic electrolytes for Li batteries. Insufficient contact between the anode and SSE results in high interface resistance, thus causing the batteries to exhibit high charging and discharging overpotentials. Recently, we reduced the overpotential of Li stripping and plating by introducing a high proportion of dual-conductive phases into a composite anode. The current study investigates the interface resistance and stability of a composite electrode modified with Zn and a lower proportion of dual-conductive phases. Zn-cation-adsorbed Prussian blue is synthesized as an intermediate component for a Zn-modified composite electrode (Li-FeZnNC). The Li-FeZnNC symmetric cell presents a lower interface resistance and overpotential compared with Li-FeNC (without Zn modification) and Li-symmetric cells. The Li-FeZnNC symmetric cell shows high electrochemical stability during Li stripping and plating at different current densities and high stability for 200 h. Full batteries with a Li-FeZnNC composite anode, garnet-type SSE, and LiFePO4 cathode show low charging and discharging overpotentials, a capacity of 152 mAh g−1, and high stability for 200 cycles.

通过在双导电相复合阳极中加入锌优化二维固态电解质-阳极界面
固态电解质(SSE)是解决锂电池易燃有机电解质相关安全问题的一种方法。阳极和固态电解质之间的接触不足会导致界面电阻过高,从而使电池表现出很高的充电和放电过电位。最近,我们在复合阳极中引入了高比例的双导电相,从而降低了锂剥离和电镀的过电位。本研究调查了用锌和较低比例的双导电相修饰的复合电极的界面电阻和稳定性。作为 Zn 改性复合电极(Li-FeZnNC)的中间成分,合成了吸附 Zn 阳离子的普鲁士蓝。Li-FeZnNC 对称电池与 Li-FeNC(无 Zn 修饰)和 Li 对称电池相比,具有更低的界面电阻和过电位。Li-FeZnNC 对称电池在不同电流密度下的锂剥离和电镀过程中表现出较高的电化学稳定性,并可在 200 小时内保持稳定。采用 Li-FeZnNC 复合阳极、石榴石型 SSE 和 LiFePO4 阴极的全电池显示出较低的充电和放电过电位、152 mAh g-1 的容量和 200 次循环的高稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信