Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei E. I. Sha;Zhihao Lan;Menglin L. N. Chen;Yongpin P. Chen;Sheng Sun
{"title":"Spin and Orbital Angular Momenta of Electromagnetic Waves: From Classical to Quantum Forms","authors":"Wei E. I. Sha;Zhihao Lan;Menglin L. N. Chen;Yongpin P. Chen;Sheng Sun","doi":"10.1109/JMMCT.2024.3370729","DOIUrl":null,"url":null,"abstract":"Angular momenta of electromagnetic waves are important both in concepts and applications. In this work, we systematically discuss two types of angular momenta, i.e., spin angular momentum and orbital angular momentum in various cases, e.g., with source and without source, in classical and quantum forms. Numerical results demonstrating how to extract the topological charge of a classical vortex beam by spectral method are also presented.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"113-117"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10453653","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10453653/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Angular momenta of electromagnetic waves are important both in concepts and applications. In this work, we systematically discuss two types of angular momenta, i.e., spin angular momentum and orbital angular momentum in various cases, e.g., with source and without source, in classical and quantum forms. Numerical results demonstrating how to extract the topological charge of a classical vortex beam by spectral method are also presented.
电磁波的自旋和轨道角动量:从经典形式到量子形式
电磁波的角动量在概念和应用中都很重要。在这项工作中,我们系统地讨论了两种角动量,即自旋角动量和轨道角动量,在各种情况下,例如有源和无源,在经典和量子形式下。此外,我们还展示了如何通过光谱法提取经典涡束拓扑电荷的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信