{"title":"Multiband SINC-slotted Patch Antenna for 5G Applications","authors":"Qusai H. Sultan, A. Sabaawi","doi":"10.3311/ppee.23634","DOIUrl":null,"url":null,"abstract":"In this work, we presented the design, analysis and optimization of the multiband slotted antennas based on SINC function for 5G applications. The proposed antennas are designed and modelled by CST Studio Suite software. A parametric study is performed to determine sinc function parameters that control the performance of the proposed antenna. The parametric study is implemented by varying the amplitude of the sinc function, the frequency, the location of the slot along Y-axis, the slot width and the slot window (number of cycles). The simulated results showed that the designed slotted antennas in this paper exhibits multiband operation and they offer the feasibility of controlling and adjusting the resonant frequency by changing the sinc function parameters. The proposed antennas have various resonant frequencies at around 1.5 GHz, 2.65 GHz, 5 GHz and 5.8 GHz covering the 5G sub-6 GHz band. Extensive simulation process were carried out to determine the optimum antenna performance and three antennas were selected based on the reflection characteristics and number of operation frequency bands. Finally, the three selected antennas were manufactured and their performance were measured in the lab for validation. Experimental results showed that an excellent agreement between the measured and simulated results was achieved.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"110 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.23634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we presented the design, analysis and optimization of the multiband slotted antennas based on SINC function for 5G applications. The proposed antennas are designed and modelled by CST Studio Suite software. A parametric study is performed to determine sinc function parameters that control the performance of the proposed antenna. The parametric study is implemented by varying the amplitude of the sinc function, the frequency, the location of the slot along Y-axis, the slot width and the slot window (number of cycles). The simulated results showed that the designed slotted antennas in this paper exhibits multiband operation and they offer the feasibility of controlling and adjusting the resonant frequency by changing the sinc function parameters. The proposed antennas have various resonant frequencies at around 1.5 GHz, 2.65 GHz, 5 GHz and 5.8 GHz covering the 5G sub-6 GHz band. Extensive simulation process were carried out to determine the optimum antenna performance and three antennas were selected based on the reflection characteristics and number of operation frequency bands. Finally, the three selected antennas were manufactured and their performance were measured in the lab for validation. Experimental results showed that an excellent agreement between the measured and simulated results was achieved.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).