Pool Fires Within a Large Under-Ventilated Environment: Experimental Analysis and Numerical Simulation Using OpenFOAM

IF 2.3 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Marco Cavazzuti, Paolo Tartarini
{"title":"Pool Fires Within a Large Under-Ventilated Environment: Experimental Analysis and Numerical Simulation Using OpenFOAM","authors":"Marco Cavazzuti,&nbsp;Paolo Tartarini","doi":"10.1007/s10694-024-01554-4","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental analyses and numerical simulations are carried out on a test case involving an heptane pool fire within a large under-ventilated environment. During the experiments, the temperature history at several locations within the room is monitored by means of thermocouples, and the fire radiative heat transfer estimated through a plate thermocouple. The experimental layout is then replicated numerically and tested using OpenFOAM CFD code. The study is a preliminary analysis performed for code validation purposes on a full-scale fire scenario. The results of the simulations are compared to the experimental results and critically analysed, finding a reasonable agreement overall. Critical issues in fire modelling are also highlighted. In fact, due to the problem complexity and the limitations of the numerical models available some important aspect that can significantly influence the outcome of the simulations must be calibrated a posteriori, somewhat limiting the general predictive applicability of the fire models. Primarily, these are the heat release rate history, the combustion efficiency, and, to a lesser extent, the convective heat transfer boundary condition at the wall.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1891 - 1915"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01554-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01554-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental analyses and numerical simulations are carried out on a test case involving an heptane pool fire within a large under-ventilated environment. During the experiments, the temperature history at several locations within the room is monitored by means of thermocouples, and the fire radiative heat transfer estimated through a plate thermocouple. The experimental layout is then replicated numerically and tested using OpenFOAM CFD code. The study is a preliminary analysis performed for code validation purposes on a full-scale fire scenario. The results of the simulations are compared to the experimental results and critically analysed, finding a reasonable agreement overall. Critical issues in fire modelling are also highlighted. In fact, due to the problem complexity and the limitations of the numerical models available some important aspect that can significantly influence the outcome of the simulations must be calibrated a posteriori, somewhat limiting the general predictive applicability of the fire models. Primarily, these are the heat release rate history, the combustion efficiency, and, to a lesser extent, the convective heat transfer boundary condition at the wall.

Abstract Image

通风不足的大型环境中的水池火灾:使用 OpenFOAM 进行实验分析和数值模拟
实验分析和数值模拟是在通风不足的大型环境中对庚烷池火灾进行的测试。在实验过程中,通过热电偶监测室内多个位置的温度变化,并通过板式热电偶估算火灾辐射传热。然后使用 OpenFOAM CFD 代码对实验布局进行数值复制和测试。该研究是一项初步分析,目的是对全尺寸火灾场景进行代码验证。模拟结果与实验结果进行了比较和批判性分析,发现二者总体上吻合。同时还强调了火灾建模中的关键问题。事实上,由于问题的复杂性和现有数值模型的局限性,一些会对模拟结果产生重大影响的重要方面必须进行事后校准,这在一定程度上限制了火灾模型的一般预测适用性。这些方面主要是热释放率历史、燃烧效率,其次是墙壁的对流传热边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire Technology
Fire Technology 工程技术-材料科学:综合
CiteScore
6.60
自引率
14.70%
发文量
137
审稿时长
7.5 months
期刊介绍: Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis. The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large. It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信