Unraveling the Stability of Layered Intercalation Compounds through First-Principles Calculations: Establishing a Linear Free Energy Relationship with Aqueous Ions
Naoto Kawaguchi*, Kiyou Shibata and Teruyasu Mizoguchi*,
{"title":"Unraveling the Stability of Layered Intercalation Compounds through First-Principles Calculations: Establishing a Linear Free Energy Relationship with Aqueous Ions","authors":"Naoto Kawaguchi*, Kiyou Shibata and Teruyasu Mizoguchi*, ","doi":"10.1021/acsphyschemau.3c00063","DOIUrl":null,"url":null,"abstract":"<p >Layered intercalation compounds, where atoms or molecules (intercalants) are inserted into layered materials (hosts), hold great potential for diverse applications. However, the lack of a systematic understanding of stable host–intercalant combinations poses challenges in materials design due to the vast combinatorial space. In this study, we performed first-principles calculations on 9024 compounds, unveiling a novel linear regression equation based on the principle of hard and soft acids and bases. This equation, incorporating the intercalant ion formation energy and ionic radius, quantitatively reveals the stability factors. Additionally, employing machine learning, we predicted regression coefficients from host properties, offering a comprehensive understanding and a predictive model for estimating the intercalation energy. Our work provides valuable insights into the energetics of layered intercalation compounds, facilitating targeted materials design.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.3c00063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered intercalation compounds, where atoms or molecules (intercalants) are inserted into layered materials (hosts), hold great potential for diverse applications. However, the lack of a systematic understanding of stable host–intercalant combinations poses challenges in materials design due to the vast combinatorial space. In this study, we performed first-principles calculations on 9024 compounds, unveiling a novel linear regression equation based on the principle of hard and soft acids and bases. This equation, incorporating the intercalant ion formation energy and ionic radius, quantitatively reveals the stability factors. Additionally, employing machine learning, we predicted regression coefficients from host properties, offering a comprehensive understanding and a predictive model for estimating the intercalation energy. Our work provides valuable insights into the energetics of layered intercalation compounds, facilitating targeted materials design.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis