Unbounded Sturm attractors for quasilinear parabolic equations

IF 0.7 3区 数学 Q2 MATHEMATICS
Phillipo Lappicy, Juliana Fernandes
{"title":"Unbounded Sturm attractors for quasilinear parabolic equations","authors":"Phillipo Lappicy, Juliana Fernandes","doi":"10.1017/s0013091524000129","DOIUrl":null,"url":null,"abstract":"We analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"258 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.
准线性抛物方程的无界斯特姆吸引子
我们分析了准线性抛物方程在解可能长大(即在无限时间内爆炸)时的渐近动力学。对于这类模型,存在一个无边界的全局吸引子,半流通过普恩卡雷投影在无穷远处诱导出非线性动力学。如果无穷大处的动力学是由半线性方程给出的,那么它就是梯度的,由所谓的无穷大处平衡态及其相应的异线性组成。此外,扩散和反应对无穷远处的诱导动力学维度具有竞争性。如果平衡点是双曲的,我们会明确证明在有界平衡点和/或无穷远处的平衡点之间会出现异直线。这些无界全局吸引子描述了某些黑洞事件视界的可容许初始数据空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信