Effect of Rotating Magnetic Field on the Thermocapillary Flow Instability in a Liquid Bridge

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Qiulin Li, Shiliang Zhou, Shicheng Li, Jinchao He, Hao Liu
{"title":"Effect of Rotating Magnetic Field on the Thermocapillary Flow Instability in a Liquid Bridge","authors":"Qiulin Li,&nbsp;Shiliang Zhou,&nbsp;Shicheng Li,&nbsp;Jinchao He,&nbsp;Hao Liu","doi":"10.1007/s12217-024-10098-9","DOIUrl":null,"url":null,"abstract":"<div><p>The stability of thermocapillary flow in a liquid bridge under a transverse rotating magnetic field (RMF) was numerically investigated by the linear stability analysis using the spectral element method. Three commonly used RMF models, namely, the infinite model, the simplified finite model and the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model, are employed to describe the RMF and their results are compared. Additionally, for the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model, the uniform and non-uniform RMF were also compared. The numerical results show that with the increase of magnetic Taylor number <i>Ta</i>, the critical Marangoni number (<i>Ma</i><sub><i>c</i></sub>) for the three RMF models increases firstly, then decreases sharply to a minimum, finally increases again when the RMF is strong enough to suppress the radial and axial convection induced by thermocapillary force. Two transitions between the wavenumber <i>k=</i>1 and <i>k=</i>2 mode are observed with increasing <i>Ta</i>. The results obtained by the simplified finite model are in good agreement with those of the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model, however, the infinite model has a significant deviation compared to the <i>Φ</i><sub>1</sub>-<i>Φ</i><sub>2</sub> model. Besides, the results indicate that the non-uniform RMF has a relatively weak action compared with the uniform RMF.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10098-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of thermocapillary flow in a liquid bridge under a transverse rotating magnetic field (RMF) was numerically investigated by the linear stability analysis using the spectral element method. Three commonly used RMF models, namely, the infinite model, the simplified finite model and the Φ1-Φ2 model, are employed to describe the RMF and their results are compared. Additionally, for the Φ1-Φ2 model, the uniform and non-uniform RMF were also compared. The numerical results show that with the increase of magnetic Taylor number Ta, the critical Marangoni number (Mac) for the three RMF models increases firstly, then decreases sharply to a minimum, finally increases again when the RMF is strong enough to suppress the radial and axial convection induced by thermocapillary force. Two transitions between the wavenumber k=1 and k=2 mode are observed with increasing Ta. The results obtained by the simplified finite model are in good agreement with those of the Φ1-Φ2 model, however, the infinite model has a significant deviation compared to the Φ1-Φ2 model. Besides, the results indicate that the non-uniform RMF has a relatively weak action compared with the uniform RMF.

Abstract Image

Abstract Image

旋转磁场对液桥中热毛细管流动不稳定性的影响
利用谱元法的线性稳定性分析,对横向旋转磁场(RMF)下液桥中热毛细管流动的稳定性进行了数值研究。采用了三种常用的 RMF 模型,即无限模型、简化有限模型和 Φ1-Φ2 模型来描述 RMF,并对它们的结果进行了比较。此外,对于 Φ1-Φ2 模型,还比较了均匀和非均匀 RMF。数值结果表明,随着磁泰勒数 Ta 的增大,三种 RMF 模型的临界马兰戈尼数(Mac)先是增大,然后急剧下降到最小值,最后当 RMF 强大到足以抑制热毛细力引起的径向和轴向对流时,临界马兰戈尼数(Mac)又再次增大。随着 Ta 的增加,可观察到波长 k=1 和 k=2 模式之间的两种转变。简化有限模型得到的结果与Φ1-Φ2 模型的结果十分吻合,但无限模型与Φ1-Φ2 模型相比有明显偏差。此外,结果表明,与均匀 RMF 相比,非均匀 RMF 的作用相对较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信