Leveraging bismuth immiscibility to create highly concave noble-metal nanoparticles

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-06-13 DOI:10.1016/j.chempr.2024.02.002
Melissa E. King , Yuting Xu , Porvajja Nagarajan , Noah L. Mason , Anthony J. Branco , Connor S. Sullivan , Samantha M. Silva , Sangmin Jeong , Fanglin Che , Michael B. Ross
{"title":"Leveraging bismuth immiscibility to create highly concave noble-metal nanoparticles","authors":"Melissa E. King ,&nbsp;Yuting Xu ,&nbsp;Porvajja Nagarajan ,&nbsp;Noah L. Mason ,&nbsp;Anthony J. Branco ,&nbsp;Connor S. Sullivan ,&nbsp;Samantha M. Silva ,&nbsp;Sangmin Jeong ,&nbsp;Fanglin Che ,&nbsp;Michael B. Ross","doi":"10.1016/j.chempr.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The nanoscale integration of metals with differences in structure and electronics, although important for manipulating surface adsorption, does not typically yield structures with well-defined morphologies in colloidal synthesis. To create structures with unusually undercoordinated surfaces, we leverage the immiscibility of face-centered cubic noble metals with rhombohedral Bi to synthesize well-defined nanostructures with controllable concavity. With Au, three distinct morphologies can be achieved: concave tetrahedra, stella octangula (dual tetrahedron), and concave stella octangula. With Pd, we synthesize concave tetrahedra. Structural and compositional analysis shows that only ∼6 × 10<sup>−6</sup> moles of surface Bi are needed for realizing these morphologies. Electrocatalytic experiments and simulations reveal that, compared with non-Bi-directed concave nanoparticles, the concave Au architectures are highly active toward alcohol oxidation and that surface Bi is critical for adsorption. This integration of immiscible elements provides a powerful strategy for creating highly active nanoparticles with precision.</p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451929424000640/pdfft?md5=d45be437c60a4332528573e5dd474b76&pid=1-s2.0-S2451929424000640-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424000640","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The nanoscale integration of metals with differences in structure and electronics, although important for manipulating surface adsorption, does not typically yield structures with well-defined morphologies in colloidal synthesis. To create structures with unusually undercoordinated surfaces, we leverage the immiscibility of face-centered cubic noble metals with rhombohedral Bi to synthesize well-defined nanostructures with controllable concavity. With Au, three distinct morphologies can be achieved: concave tetrahedra, stella octangula (dual tetrahedron), and concave stella octangula. With Pd, we synthesize concave tetrahedra. Structural and compositional analysis shows that only ∼6 × 10−6 moles of surface Bi are needed for realizing these morphologies. Electrocatalytic experiments and simulations reveal that, compared with non-Bi-directed concave nanoparticles, the concave Au architectures are highly active toward alcohol oxidation and that surface Bi is critical for adsorption. This integration of immiscible elements provides a powerful strategy for creating highly active nanoparticles with precision.

Abstract Image

利用铋的不溶性制造高凹面贵金属纳米粒子
虽然具有不同结构和电子学特性的金属在纳米尺度上的整合对于操纵表面吸附力非常重要,但在胶体合成中通常不会产生具有明确形态的结构。为了创建具有异常欠配位表面的结构,我们利用面心立方贵金属与斜方体铋的不溶性,合成了具有可控凹度的定义明确的纳米结构。对于金,可以实现三种不同的形态:凹四面体、星状八面体(双四面体)和凹星状八面体。我们用钯合成了凹四面体。结构和成分分析表明,实现这些形态只需要 6 × 10 摩尔的表面 Bi。电催化实验和模拟显示,与非双向凹面纳米粒子相比,凹面金结构对酒精氧化具有很高的活性,而表面 Bi 是吸附的关键。这种不相溶元素的整合为精确制造高活性纳米粒子提供了一种强大的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信