The integral closure of a primary ideal is not always primary

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Nan Li , Zijia Li , Zhi-Hong Yang , Lihong Zhi
{"title":"The integral closure of a primary ideal is not always primary","authors":"Nan Li ,&nbsp;Zijia Li ,&nbsp;Zhi-Hong Yang ,&nbsp;Lihong Zhi","doi":"10.1016/j.jsc.2024.102315","DOIUrl":null,"url":null,"abstract":"<div><p>In <span>1936</span>, Krull asked if the integral closure of a primary ideal is still primary. Fifty years later, Huneke partially answered this question by giving a primary polynomial ideal whose integral closure is not primary in a regular local ring of characteristic <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>. We provide counterexamples to Krull's question regarding polynomial rings over any fields. We also find that the Jacobian ideal <em>J</em> of the polynomial <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>z</mi><mi>t</mi><mo>+</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> given by <span>Briançon and Speder (1975)</span> is a counterexample to Krull's question.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1936, Krull asked if the integral closure of a primary ideal is still primary. Fifty years later, Huneke partially answered this question by giving a primary polynomial ideal whose integral closure is not primary in a regular local ring of characteristic p=2. We provide counterexamples to Krull's question regarding polynomial rings over any fields. We also find that the Jacobian ideal J of the polynomial f=x6+y6+x4zt+z3 given by Briançon and Speder (1975) is a counterexample to Krull's question.

原初理想的积分封闭并不总是原初的
克鲁尔(Krull)提出了一个问题:初等理想的积分闭包是否仍然是初等理想?五十年后,胡内克部分地回答了这个问题,他给出了一个主多项式理想,这个理想的积分闭包在特征为...的正则局部环中不是主理想。我们提供了克鲁尔关于任意域上多项式环问题的反例。我们还发现由给出的多项式的雅各理想是克鲁尔问题的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信